K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

sao cái này mk thấy giống đề tin học quá z

13 tháng 6 2018

ko phải đâu đề toán đấy

24 tháng 8 2018

nhiều thế, đăng ít một thôi bạn

24 tháng 8 2018

a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)

14 tháng 3 2017

tầm như của lớp 6dungfds hơn

1 tháng 6 2018

A) A= -1^2+2^2-3^2+4^2...99^2+100^2

A = ( 22 - 12 ) . ( 42 - 32 ) + ... + ( 1002 - 992 )

= ( 2 - 1 ) . ( 1 + 2 ) + ( 4 - 3 ) . ( 3 + 4 ) + ... + ( 100 - 99 ) . ( 99 + 100 )

= 1 + 2 + 3 + 4 + ... + 99 + 100

\(\frac{100.101}{2}=5050\)

19 tháng 4 2017

\(A=4.\dfrac{25}{16}+25.\left[\dfrac{9}{16}:\dfrac{125}{64}\right]:\dfrac{-27}{8}\)

\(=\dfrac{25}{16}+25.\dfrac{36}{125}:\dfrac{-27}{8}=-\dfrac{137}{240}\left(1\right)\)

\(B=125.\left[\dfrac{1}{25}+\dfrac{1}{64}:8\right]-64.\dfrac{1}{64}\)

\(=125.\dfrac{89}{1600}:8-64.\dfrac{1}{64}=\dfrac{-67}{512}\left(2\right)\)

Vì (2) > (1) => B > A

1: A=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)

=(3^4-1)(3^4+1)(3^8+1)(3^16+1)

=(3^8-1)(3^8+1)(3^16+1)

=(3^16-1)(3^16+1)

=3^32-1

2: B=(1-3^2)(1+3^2)*...*(1+3^16)

=(1-3^4)(1+3^4)(1+3^8)(1+3^16)

=1-3^32

7 tháng 7 2023

1

\(A=8\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(3^{16}-1\right)\left(3^{16}+1\right)\\ =3^{32}-1\)

 

\(B=\left(1-3\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(1-3^2\right)\left(1+3^2\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(1-3^4\right)\left(1+3^4\right)\left(3^8+1\right)\left(3^{16}+1\right)\\ =\left(1-3^8\right)\left(1+3^8\right)\left(3^{16}+1\right)\\ =\left(1-3^{16}\right)\left(1+3^{16}\right)=1-3^{32}\)