K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2020

là sao ạ

NV
22 tháng 8 2020

Áp dụng hằng đẳng thức \(\left(a+b\right)^2\) với \(a=x+y\)\(b=z\)

Đã cẩn thận khoanh ngoặc cho bạn nhìn đỡ phải hỏi rồi mà vẫn đi hỏi :D

24 tháng 4 2017

Ta thấy :   \(x^2+1\ge1\)  nên để   \(\left(3x-1\right)\left(x^2+1\right)< 0\)\(thì\) \(3x-1< 0\)\(hay\)  \(x< \frac{1}{3}\)

9 tháng 10 2021

3x5kwkj

11 tháng 9 2018

Bạn có thể thấy 2x-1 là a , 3x+2 là b thì 2.(2x-1)(3x+2)=2ab

nên phương trình trên có thể dùng bình phương 1 tổng 

\(\left(2x-1\right)^2+\left(3x+2\right)^2-2.\left(2x-1\right).\left(3x+2\right)=\left[\left(2x-1\right)-\left(3x+2\right)\right]^2\)

\(=\left(2x-1-3x-2\right)^2=\left(-x-3\right)^2=\left(x+3^2\right)\)

11 tháng 9 2018

cái cuối là  (x+3)2 nhé, không phải (x+32) đâu

11 tháng 7 2018

1) \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x\left(x^2-16\right)\)

\(=x^3-16x-\left(x^2+1\right)\left(x^2-1\right)\)

\(=x^3-16x-x^4+1\)

b) \(7x\left(4y-x\right)+4y\left(y-7x\right)-2\left(2y^2-3.5x\right)\)

\(=28xy-7x^2+4y\left(y-7x\right)-2\left(2y^2-3.5x\right)\)

\(=28xy-7x^2+4y^2-28xy-4y^2+7x\)

\(=-7x^2+7x\)

c) \(\left(3x-1\right)\left(2x-5\right)-4\left(2x^2-5x+2\right)\)

\(=6x^2-17x+5-4\left(2x^2-5x+2\right)\)

\(=6x^2-17x+5-8x^2+20x-8\)

\(=-2x^2+3x-3\)

11 tháng 7 2018

a)  x(x+4)(x-4)-(x2+1)(x2-1)

=>x(x2-42)-(x4-12)

=>x3-16x-x4+1

=>-x4-x3-15x

b)  7x(4y-x)+4y(y-7x)-2(2y2-3.5x)

=>28xy-7x2+4y2-28xy-4y2+30x

=>-7x2+30x

c)  (3x+1)(2x-5)-4(2x2-5x+2)

=>6x2-15x+2x-5-8x2+20x-8

=>-2x2+7x-13

4 tháng 11 2016

1.

a) \(\left(-2x^3\right)\)\(\left(x^2+5x-\frac{1}{2}\right)\) = \(-2x^5\)\(-10x^4\) \(+x^3\)

b) (\(6x^3-7x^2\)\(-x+2\))\(:\left(2x+1\right)\)=\(3x^2-5x+2\)

2.

a) 9x(3x-y) + 3y (y-3x)=9x(3x-y)-3y(3x-y)

= (9x-3y)(3x-y)

= 3(3x-y)(3x-y)

= 3(3x-y)^2

b) \(x^3-3x^2\)\(-9x+27\)= \(\left(x^3-3x^2\right)\)\(-\left(9x-27\right)\)

= \(x^2\left(x-3\right)\)\(-9\left(x-3\right)\)

= \(\left(x^2-9\right)\left(x-3\right)\)

= \(\left(x+3\right)\left(x-3\right)\left(x-3\right)\)

= \(\left(x+3\right)\left(x-3\right)^2\)

4 tháng 11 2016

Bài 1 ) a ) \(\left(-2x^3\right)\left(x^2+5x-\frac{1}{2}\right)\)

\(=-2x^5-10x^4+x^3\)

b ) \(\left(6x^3-7x^2+x+2\right):\left(2x+1\right)\)

\(=3x^2-5x+2\)

2 ) a ) \(9x\left(3x-y\right)+3y\left(y-3x\right)\)

\(=9x\left(3x-y\right)-3y\left(3x-y\right)\)

\(=\left(3x-y\right)\left(9x-3y\right)\)

\(=3\left(3x-y\right)\left(x-y\right)\)

b ) \(x^3-3x^2-9x+27\)

\(=\left(x^3-3x^2\right)-\left(9x-27\right)\)

\(=x^2\left(x-3\right)-9\left(x-3\right)\)

\(=\left(x^2-9\right)\left(x-3\right)\)

\(=\left(x-3\right)\left(x+3\right)\left(x-3\right)\)