K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017
  • Ta có: 1.3.5...(2n - 1) 
  • = { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n) 
  • = (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ] 
  • = {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ] 
  • = [ (n + 1)(n + 2)...2n ]/(2.2.2...2) 
  • => 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2) 
  • Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương 
  • => [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương 
  • => [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2) 
  • Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2) 
  • Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2) 
  • => [ (n + 1)(n + 2)...2n ] chia hết cho 2^n 
15 tháng 1 2017

Ta có: 1.3.5...(2n - 1) 
= { [1.3.5....(2n - 1)].(2.4.6...2n) }/(2.4.6...2n) 
= (1.2.3.4....2n)/[ (1.2).(2.2).(3.2)...(n.2) ] 
= {(1.2.3.4...n).[ (n + 1)(n + 2)...2n ] }/[ (1.2.3..n)(2.2.2...2) ] 
= [ (n + 1)(n + 2)...2n ]/(2.2.2...2) 
=> 1.3.5...(2n - 1) = [ (n + 1)(n + 2)...2n ]/(2.2.2...2) 
Do n ∈ Z+ => 1.3.5...(2n - 1) thuộc nguyên dương 
=> [ (n + 1)(n + 2)...2n ]/(2.2.2...2) thuộc nguyên dương 
=> [ (n + 1)(n + 2)...2n ] chia hết cho (2.2.2...2) 
Bây giờ ta cần tìm số chữ số 2 trong cụm (2.2.2....2) 
Ta thấy: 2 -> 2n có (2n - 2)/2 + 1 = n chữ số => trong cụm (2.2.2...2) có n chữ số 2 (Vì trong mỗi số từ 2 -> 2n ta đều lấy ra 1 số 2) 
=> [ (n + 1)(n + 2)...2n ] chia hết cho 2^n 

23 tháng 12 2022

loading...

AH
Akai Haruma
Giáo viên
23 tháng 12 2022

Việc khẳng định ƯCLN (2n+1, 9n+6)=3 là sai nhé bạn. 3 là ƯCLN có thể xảy ra của $2n+1, 9n+6$ thôi. Còn việc đưa ra khẳng định ƯCLN(2n+1, 9n+6)=3 là sai vì 2n+1 chưa chắc đã chia hết cho 3 với n là số tự nhiên.

Ta có: S = \(\dfrac{1}{3}+\dfrac{3}{3.7}+\dfrac{5}{3.7.11}+...+\dfrac{2n+1}{3.7.11...\left(4n+3\right)}\)

⇒ 2S = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+2}{3.7.11...\left(4n+3\right)}\)

⇒ 2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+...+\dfrac{4n+3}{3.7.11...\left(4n+3\right)}\)

Đến đây nó sẽ rút gọn liên tục và sau nhiều lần rút gọn ta có:

2S + \(\dfrac{1}{3.7.11...\left(4n+3\right)}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{10}{3.7.11}+\dfrac{1}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{11}{3.7.11}\) = \(\dfrac{2}{3}+\dfrac{6}{3.7}+\dfrac{1}{3.7}\) = \(\dfrac{2}{3}+\dfrac{7}{3.7}=\dfrac{2}{3}+\dfrac{1}{3}=1\)

Suy ra 2S < 1 ⇒ S < \(\dfrac{1}{2}\)(đpcm)

15 tháng 6 2017

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm

8 tháng 5 2023

A = \(\dfrac{2n^2+n+1}{n}\) ( n #0)

Gọi ước chung của ớn nhất của 2n2 + n + 1 và n là d

Ta có: \(\left\{{}\begin{matrix}2n^2+n+1⋮d\\n⋮d\end{matrix}\right.\)  ⇒  1 ⋮ d ⇒ d = 1

Vậy ước chung lớn nhất của 2n2 + n + 1 và n là 1 

hay phân số \(\dfrac{2n^2+n+1}{n}\) là phân số tối giản ( đpcm)

26 tháng 6 2017

Với n = 0

\(\Rightarrow3.5^{2.0+1}+2^{3.0+1}=3.5+2=15+2=17⋮17\Rightarrow\)đúng với n = 0

Giả sử \(3.5^{2n+1}+2^{3n+1}\) đúng với n = k \(\in\) N*

\(\Rightarrow3.5^{2k+1}+2^{3k+1}⋮17\)

C/m : \(3.5^{2n+1}+2^{3n+1}\) đúng với n = k + 1 ( k \(\in\) N* )

Ta có :

\(3.5^{2n+1}+2^{3n+1}=3.5^{2\left(k+1\right)+1}+2^{3\left(k+1\right)+1}\)

\(=3.25.5^{2k+1}+8.3^{3k+1}=3.25.5^{2k+1}+25.2^{3k+1}-17.2^{3k+1}\)

\(=25\left(3.5^{2k+1}+2^{3k+1}\right)-17.2^{3k+1}\)

Vì : \(17.2^{3k+1}⋮17\) ; \(3.5^{2k+1}+2^{3k+1}⋮17\) theo phương pháp quy nạp

\(\Rightarrow3.5^{2\left(k+1\right)+1}+2^{3\left(k+1\right)+1}⋮17\)

Vậy ...