K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016

Gọi \(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\)

      \(B=1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\)

Từ đề bài ta có

\(D=182\left[\frac{A}{2A}:\frac{4B}{B}\right]:\frac{919191}{808080}\)

\(D=182\times\left(\frac{1}{2}:4\right):\frac{91}{80}\)

\(D=182\times\frac{1}{8}\times\frac{80}{91}\)

\(D=\frac{91\times2\times1\times8\times10}{8\times91}=20\)

cho tui nha

21 tháng 2 2016

Ta có:\(D=182\left[\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}}:\frac{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right]:\frac{919191}{808080}\)

\(D=182\left[\frac{1\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)}{2\left(1+\frac{1}{3}+\frac{1}{9}+\frac{2}{27}\right)}:\frac{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right]:\frac{919191}{808080}\)

\(D=182\left[\frac{1}{2}:4\right]:\frac{919191}{808080}=182\left[\frac{1}{2}.\frac{1}{4}\right]:\frac{919191}{808080}=182.\frac{1}{8}:\frac{919191}{808080}=\frac{182}{8}:\frac{919191}{808080}\)\(\frac{919191}{808080}=\frac{919191:10101}{808080:10101}=\frac{91}{80}\)

\(\Rightarrow D=\frac{182}{8}:\frac{91}{80}=\frac{182}{8}.\frac{80}{91}=\frac{182.80}{8.91}=\frac{91.2.8.10}{8.91}=2.10=20\)

Vậy D=20
 

11 tháng 12 2017

\(A=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{\dfrac{8}{2}-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4\left(1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}\right)}=\dfrac{1}{4}\)

8 tháng 1 2018

\(A=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{9}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)

\(A=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{\left(7.7\right)^2}}{\dfrac{8}{2}-\dfrac{4}{9}+\dfrac{4}{49}-\dfrac{4}{343}}\)

\(A=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{2401}}{\dfrac{8}{2}-\dfrac{4}{9}+\dfrac{4}{49}-\dfrac{4}{343}}\)

\(A=\dfrac{\dfrac{6}{7}+\dfrac{1}{49}-\dfrac{1}{2401}}{\dfrac{32}{9}+\dfrac{4}{49}-\dfrac{4}{343}}\)

\(A=\dfrac{\dfrac{43}{49}-\dfrac{1}{2401}}{\dfrac{1604}{441}-\dfrac{4}{343}}\)

\(A=\dfrac{\dfrac{2106}{2401}}{3,625526401}\)

\(A=\dfrac{2106}{2401}:3,625526401\)

\(A=\dfrac{9477}{39172}\)

24 tháng 12 2023

a: \(A=\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}\)

\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}\)

\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4\left(1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}\right)}=\dfrac{1}{4}\)

b: \(M=1-\dfrac{5}{\sqrt{196}}-\dfrac{5}{\left(2\sqrt{21}\right)^2}-\dfrac{\sqrt{25}}{204}-\dfrac{\left(\sqrt{5}\right)^2}{374}\)

\(=1-\dfrac{5}{14}-\dfrac{5}{84}-\dfrac{5}{204}-\dfrac{5}{374}\)

\(=1-5\left(\dfrac{1}{14}+\dfrac{1}{84}+\dfrac{1}{204}+\dfrac{1}{374}\right)\)

\(=1-5\left(\dfrac{1}{2\cdot7}+\dfrac{1}{7\cdot12}+\dfrac{1}{12\cdot17}+\dfrac{1}{17\cdot22}\right)\)

\(=1-\left(\dfrac{5}{2\cdot7}+\dfrac{5}{7\cdot12}+\dfrac{5}{12\cdot17}+\dfrac{5}{17\cdot22}\right)\)

\(=1-\left(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}\right)\)

\(=1-\left(\dfrac{1}{2}-\dfrac{1}{22}\right)\)

\(=1-\dfrac{11-1}{22}=1-\dfrac{10}{22}=\dfrac{12}{22}=\dfrac{6}{11}\)

21 tháng 3 2019

\(B=\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)

\(B=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(B=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}\)

\(B=\frac{1}{4}\)

\(=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{\dfrac{8}{2}-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}=\dfrac{1}{4}\)

28 tháng 1 2019

\(\dfrac{1-\dfrac{1}{\sqrt{49}}+\dfrac{1}{49}-\dfrac{1}{\left(7\sqrt{7}\right)^2}}{\dfrac{\sqrt{64}}{2}-\dfrac{4}{7}+\left(\dfrac{2}{7}\right)^2-\dfrac{4}{343}}=\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4-\dfrac{4}{7}+\dfrac{4}{49}-\dfrac{4}{343}}\\ =\dfrac{1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}}{4\cdot\left(1-\dfrac{1}{7}+\dfrac{1}{49}-\dfrac{1}{343}\right)}=\dfrac{1}{4}\)