Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\frac{\left(\frac{3}{10}-\frac{4}{15}-\frac{7}{20}\right).\frac{5}{19}}{\left(\frac{1}{14}+\frac{1}{7}-\frac{-3}{35}\right).\frac{-4}{3}}\)\(=\frac{\frac{-19}{60}.\frac{5}{19}}{\frac{3}{10}.\frac{-4}{3}}=\frac{5}{24}\)
Hok tốt
a) -1+2-3+4-5+6-....-2015+2016-2017+2018
= (-1+2)+(-3+4)+(-5+6)+.….+(-2015+2016)+(-2017+2018)
= 1+1+1+....+1+1
( Có tất cả 1009 số 1)
= 1009
b)1-2+3-4+5-6+.….+1245-1246+1247-1248
=(1-2)+(3-4)+(5-6)+....+(1245-1246)+(1247-1248)
=-1+(-1)+(-1)+....+(-1)+(-1)
(Có tất cả 624 số (-1))
= -624
\(\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot...\cdot\left(1-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\dfrac{4}{5}\cdot...\cdot\dfrac{97}{98}\cdot\dfrac{98}{99}\)
\(=\dfrac{1\cdot2\cdot3\cdot...\cdot98}{2\cdot3\cdot4\cdot...\cdot99}\)
\(=\dfrac{1}{99}\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}.....\dfrac{99}{98}.\dfrac{100}{99}=\dfrac{100}{2}=50\)
Gọi biểu thức trên là A, ta có:
\(A=\frac{1}{2\cdot15}+\frac{1}{15\cdot3}+\frac{1}{3\cdot21}+\frac{1}{21\cdot4}+...+\frac{1}{87\cdot90}\)
\(13A=\frac{13}{2\cdot15}+\frac{13}{15\cdot3}+\frac{13}{3\cdot21}+\frac{13}{21\cdot4}+...+\frac{13}{87\cdot90}\)
\(13A=\frac{1}{2}-\frac{1}{15}+\frac{1}{15}-\frac{1}{3}+\frac{1}{3}-\frac{1}{21}+\frac{1}{21}-\frac{1}{4}+...+\frac{1}{87}-\frac{1}{90}\)
\(13A=\frac{1}{2}-\frac{1}{90}\)
\(13A=\frac{22}{45}\)
\(A=\frac{22}{45\text{x}13}=\frac{22}{585}\)
có:
(1994-1)+1=1994
Tổng là:
1994x(1994+1):2=1989015
Đáp số:1989015
Đặt A = 1 + 2 + 4 + 8 + 16 + ... + 1024
2A = 2 + 4 + 6 + 8 + 16 + 32 + ... + 2048
2A - A = ( 2 + 4 + 8 + 16 + 32 + ... + 2048 ) - ( 1 + 2 + 4 + 8 + 16 + ... + 1024 )
A = 2048 - 1
A = 2047
<=> 2x^2 +x-4x-2-5x-15=2x^2-6x+4+8x-2-2x
2x^2-8x-17-2x^2-2=0
-8x-19=0
x=-19/8
Ta có: \(-1=-2+1;-\frac{1}{2}=-1+\frac{1}{2};-\frac{1}{4}=-\frac{1}{2}+\frac{1}{4};...;-\frac{1}{1024}=-\frac{1}{512}+\frac{1}{1024}\)
\(\Rightarrow-1-\frac{1}{2}-\frac{1}{4}-\frac{1}{8}-...-\frac{1}{1024}\)
\(=\left(-2+1\right)+\left(-1+\frac{1}{2}\right)+\left(-\frac{1}{2}+\frac{1}{4}\right)\)\(+...+\left(-\frac{1}{512}+\frac{1}{1024}\right)\)
\(=-2+1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{4}-...-\frac{1}{512}+\frac{1}{1024}\)
\(=-2+\frac{1}{1024}\)
\(=-\frac{2047}{1024}\)