Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{abcd}\)
a có 6 cách
b có 6 cách
c có 5 cách
d có 4 cách
=>Có 6*6*5*4=36*20=720 số
Gọi số đó là `\overline{abcdefg}` `(a;b;c;d;e;f;g in S;a ne b ne c ne d ne e ne f ne g;a ne 0)`
`@TH1: 1;2;3` đứng ở vị trí của `a;b;c`
`=>` Có `3!.4!=144` số
`@TH2: 1;2;3` đứng ở vị trí của `b;c;d` hoặc `c;d;e` hoặc `d;e;f` hoặc `e;f;g`
`=>` Có `3!.4.3.3!=432` số
Vậy có tất cả `144+432=576` số t/m.
a) Xét trường hợp các chữ số đều bình đẳng :
Số cách sắp xếp 2 chữ số lẻ khác nhau từ A cho 4 vị trí :
\(C_3^1.C_4^1.C_2^1.C_3^1=72\)
Số cách sắp xếp 2 chữ số chẵn từ A cho 2 vị trí còn lại A :
\(C_4^1.C_2^1.C_3^1.C_1^1=24\)
=> Có tất cả : 72.24 = 1728 số
Xét trường hợp cố định số 0 đứng đầu
=> Số cách sắp xếp 2 chữ số lẻ từ A cho 3 vị trí :
\(C_3^1.C_3^1.C_2^1.C_2^1=36\)
Số cách sắp xếp 1 chữ số chẵn từ A cho vị trí còn lại :
\(C_3^1.C_1^1=3\)
=> Có tất cả : 1.36.3 = 108 số
=> Số các số thỏa mãn đề : 1728 - 108 = 1620 (số)
b) Gọi số thỏa mãn có dạng \(\overline{abcd}\)
TH1 a = 3 => b \(\in\left\{4;5;6\right\}\) hoặc b = 2
(*) \(b\in\left\{4;5;6\right\}\) => Số các số cần tìm : \(1.C_3^1.A_5^2=60\)
(*) b = 2 => Số các số cần tìm : \(1.1.1.C_2^1+1.1.1.C_4^1=6\)
TH1 có 66 số
TH2 \(a\in\left\{4;5;6\right\}\)
TH2 có : \(C_3^1.A_6^3=360\)
Vậy có tất cả 360 + 66 = 426
a) Số có ba chữ số khác nhau có thể lập được là: 6.5.4 = 120 (số)
b) Số chia hết cho 3 nên tổng 3 chữ số chia hết cho 3, có các cặp số là: (1,2,3), (1,2,6), (2,3,4), (3,4,5), (4,5,6), (1,5,6), (1,3,5), (2,4,6).
Số có ba chữ số khác nhau và chia hết cho 3 có thể lập được là:
8. 3! = 48 (số)
Gọi STN có 3 chữ số là \(\overline {abc} \)
- a có 4 cách ( khác 0).
- b có 4 cách (khác a).
- c có 3 cách (khác a, b).
Vậy có thể lập được 4. 4. 3= 48 số tự nhiên có ba chữ số khác nhau.
a: \(\overline{abcd}\)
a có 7 cách chọn
b có 6 cách
c có 5 cách
d có 4 cách
=>Có 7*6*5*4=840 cách
b: Bộ ba chia hết cho 9 sẽ có thể là (1;2;6); (1;3;5); (2;3;4)
Mỗi bộ có 3!=6(cách)
=>Có 6*3=18 cách
c: \(\overline{abcde}\)
e có 3 cách
a có 6 cách
b có 5 cách
c có 4 cách
d có 3 cách
=>Có 3*6*5*4*3=1080 cách
\(\overline{abcd}\)
a có 6 cách
b có 6 cách
c có 5 cách
d có 4 cách
=>Có 6*6*5*4=720 số
tính tổng các số cần tìm nữa bạn