K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2022

Điều kiện: \(\hept{\begin{cases}xy\ge0\\x,y\ge-1\end{cases}}\) khi đó hệ phương trình tương đương với

\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\x+y+2\sqrt{xy+x+y+1}=14\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\3+\sqrt{xy}+2\sqrt{xy+4+\sqrt{xy}}=14\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\4\left(xy+4+\sqrt{xy}\right)=\left(11-\sqrt{xy}\right)^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\3xy+26\sqrt{xy}-105=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=3+\sqrt{xy}\\\sqrt{xy}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y=6\\\sqrt{xy}=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=3\\y=3\end{cases}}\)

Vậy hệ phương trình có nghiệm duy nhất \(\left(x,y\right)=\left(3,3\right)\)

2 tháng 1 2021

Số học sinh tham gia các câu lạc bộ khác chiếm số phần trăm là :

100% - 96,875% = 3,125%

Số học sinh tham gia câu lạc bộ khác của trường Tiểu học Thành công là :

775 : 96,875 x 3,125 = 25 học sinh

Đáp số : 25 học sinh

13 tháng 1 2021

1. Coi số tổng số h/s là 100%

Số h/s ytung bình chiếm số phần trăm là: 100%-(35%+60%)=5%

Trường đó có số h/s trung bình là: 640:100x5=32(học sinh)

2. Diện tích mảnh đất đó là: 20x15=300(m2)

Diện tích phần đất xây nhà là: 300:100x32,5=97,5(m2)

Diện tích phần đất làm đường đi là: 300:100x22,5=67,5(m2)

Diện tích phần đất xây nhà và làm đường đi là: 97,5+67,5=165(m2)

3. Cửa hàng có số gạo là: 600x100:31,25=1920(kg)

4. Số học sinh tham gia clb tiếng anh là: 775:96,875x100=800(học sinh)

Số học sinh tham gia clb khác là: 800-775=25(học sinh)

VÌ BÀI DÀI NÊN TUI KO ĐÁP SỐ, PHẦN TUI GẠCH CHÂN LÀ ĐÁP SỐ NHA!

CHÚC BẠN HỌC TỐT NHA!

1 tháng 1 2021

Đặt \(m=2018,\frac{\sin B+m\sin C}{m\cos B+\cos C}=\sin A\Leftrightarrow b+mc=a\left(m\cos B+\cos C\right)\)

\(\Leftrightarrow b+mc=\frac{m\left(a^2+c^2-b^2\right)}{2c}+\frac{a^2+b^2-c^2}{2b}\)

\(\Leftrightarrow2bc\left(b+mc\right)=mb\left(a^2+c^2-b^2\right)+c\left(a^2+b^2-c^2\right)\)

\(\Leftrightarrow2b^2c+2mbc^2=mba^2+mbc^2-mb^3+ca^2+cb^2-c^3\)

\(\Leftrightarrow\left(c+mb\right)\left(b^2+c^2-a^2\right)=0\Leftrightarrow a^2=b^2+c^2\)

Vậy tam giác ABC vuông tại A

Dễ dàng CM được \(S_{ABC}=6.S_{MBG}\Rightarrow bc=12.S_{MBG}\).Do vậy ta cần CM bc chia hết cho 12

( ta sử dụng tính chất của số chính phương)

- Số chính phương chia 3 chỉ dư 0 hoặc 1

- Số chính phương chia 4 chỉ dư 0 hoặc 1

- Số chính phương lẻ chia 8 chỉ dư 1

*) Ta thấy trong 2 số \(b^2,c^2\)có ít nhất 1 số chia hết cho 3. giả sử không có số nào trong 2 số đó chia hết cho 3. Khi đó mỗi số đều chia 3 dư 1. Do đó a2 chia 3 dư 2 ( trái với tính chất số chính phương)

Do 3 là số nguyên tố nên trong 2 số b,c có ít nhất 1 số chia hết cho 3 . (1)

*)Chứng minh trong 2 số b,c có ít nhất 1 số chia hết cho 4. giả sử không có số nào trong 2 số đó chia hết cho 4. Khi đó \(b=4m+r;c=4n+q;r,q\in\left\{1;2;-1\right\}\)

+ Nếu \(r,q\in\left\{1;-1\right\}\Rightarrow a^2\)chia 4 dư 2 ( vô lý)

+ Nếu \(r\in\left\{-1;1\right\},q=2\) hoặc ngược lại thì a2 là số lẻ và a2 chia 8 dư 5 ( vô lý)

+ Nếu r=q=2 thì \(a^2=4\left(2m+1\right)^2+4\left(2n+1\right)^2\Rightarrow\)a chẵn

Đặt \(a=2p\Rightarrow p^2=\left(2m+1\right)^2+\left(2n+1\right)^2\Rightarrow p^2\)chia 4 dư 2 ( vô lý)

Vậy trong 2 số b,c có ít nhất 1 số chia hết cho 4 (2)

Từ (1) và (2) => đpcm