Bài 1. (2 điểm) Thu gọn các biểu thức:
a) $\left(-12{{x}^{13}}{{y}^{15}}+6{{x}^{10}}{{y}^{14}} \right) \, : \, \left(-3{{x}^{10}}{{y}^{14}} \right);$
b) $\left(x-y \right)\left({{x}^{2}}-2x+y \right)-{{x}^{3}}+{{x}^{2}}y.$
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(4x^4-8x^2y^2+12x^5y\right):\left(-4x^2\right)\)
\(=4x^4:-4x^2-8x^2y^2:-4x^2+12x^4y:-4x^2\)
\(=-x^2+2y^2-3x^2y\)
b) \(x^2\left(x-y^2\right)-xy\left(1-xy\right)-x^3\)
\(=x^3-x^2y^2-xy+x^2y^2-x^3\)
\(=-xy\)
a) (5x³y² - 3x²y + xy) : xy
= 5x³y² : xy + (-3x²y : xy) + xy : xy
= 5x²y - 3x + 1
b) A + 2M = P
A = P - 2M
= 3x³ - 2x²y - xy + 3 - 2.(x³ - x²y + 2xy + 3)
= 3x³ - 2x²y - xy + 3 - 2x³ + 2x²y - 4xy - 6
= (3x³ - 2x³) + (-2x²y + 2x²y) + (-xy - 4xy) + (3 - 6)
= x³ - 5xy - 3
Vậy A = x³ - 5xy - 3
a) \(A:xy\)
\(=\left(5x^3y^2-3x^2y+xy\right):xy\)
\(=5x^3y^2:xy-3x^2y:xy+xy:xy\)
\(=5x^2y-3x+1\)
b) \(A+2M=P\)
\(\Rightarrow A+2\cdot\left(x^3-x^2y+2xy\right)=3x^3-2x^2y-xy+3\)
\(\Rightarrow A+2x^3-2x^2y+4xy=3x^3-2x^2y-xy+3\)
\(\Rightarrow A=3x^3-2x^3-2x^2y+2x^2y-xy-4xy+3\)
\(\Rightarrow A=x^3-4xy+3\)
a) 2(3x - 1) = 10
3x - 1 = 10 : 2
3x - 1 = 5
3x = 5 + 1
3x = 6
x = 6 : 3
x = 2
b) (3x + 4)² - (3x - 1)(3x + 1) = 49
9x² + 24x + 16 - 9x² + 1 = 49
24x + 17 = 49
24x = 49 - 17
24x = 32
x = 32 : 24
x = 4/3
a) \(2\left(3x-1\right)=10\)
\(3x-1=5\)
\(3x=6\)
\(x=2\)
b) \(\left(3x+4\right)^2-\left(3x-1\right)\left(3x+1\right)=49\)
\(9x^2+24x+16-9x^2+1=49\)
\(24x=49-1-16=32\)
\(x=\dfrac{32}{24}=\dfrac{4}{3}\)
## Bài giải:
**a) Tứ giác BHCK là hình gì?**
* **Bước 1:** Xét tứ giác BHCK có: $\widehat{BHC} = \widehat{BKC} = 90^\circ$ (BE, CF là đường cao)
* **Bước 2:** Suy ra tứ giác BHCK nội tiếp đường tròn đường kính BC.
* **Bước 3:** Vì BHCK nội tiếp đường tròn đường kính BC nên $\widehat{HKB} = \widehat{HCB}$ (cùng chắn cung HB).
* **Bước 4:** Mặt khác, $\widehat{HCB} = \widehat{HAB}$ (cùng phụ với $\widehat{ABC}$).
* **Bước 5:** Từ bước 3 và bước 4 suy ra $\widehat{HKB} = \widehat{HAB}$.
* **Bước 6:** Xét tam giác HKB và tam giác HAB có:
* $\widehat{HKB} = \widehat{HAB}$ (chứng minh trên)
* $\widehat{KHB} = \widehat{AHB} = 90^\circ$
* $\Rightarrow$ $\triangle HKB \sim \triangle HAB$ (g.g)
* **Bước 7:** Từ bước 6 suy ra $\frac{HK}{HA} = \frac{HB}{HB} = 1 \Rightarrow HK = HA$.
* **Bước 8:** Xét tam giác HKA có HK = HA nên tam giác HKA cân tại H.
* **Bước 9:** Do đó, $\widehat{HAK} = \widehat{HKA}$.
* **Bước 10:** Mặt khác, $\widehat{HKA} = \widehat{HCB}$ (cùng chắn cung HB).
* **Bước 11:** Từ bước 9 và bước 10 suy ra $\widehat{HAK} = \widehat{HCB}$.
* **Bước 12:** Xét tam giác HAK và tam giác HCB có:
* $\widehat{HAK} = \widehat{HCB}$ (chứng minh trên)
* $\widehat{AHK} = \widehat{CHB} = 90^\circ$
* $\Rightarrow$ $\triangle HAK \sim \triangle HCB$ (g.g)
* **Bước 13:** Từ bước 12 suy ra $\frac{HK}{HC} = \frac{HA}{HB} = 1 \Rightarrow HK = HC$.
* **Bước 14:** Từ bước 7 và bước 13 suy ra HK = HA = HC.
* **Bước 15:** Xét tứ giác BHCK có:
* HK = HA = HC (chứng minh trên)
* $\Rightarrow$ Tứ giác BHCK là hình thoi.
**b) Gọi M là trung điểm của BC. Chứng minh H, M, K thẳng hàng.**
* **Bước 1:** Vì M là trung điểm của BC nên HM là đường trung tuyến của tam giác HBC.
* **Bước 2:** Mặt khác, BHCK là hình thoi nên HM cũng là đường cao của tam giác HBC.
* **Bước 3:** Do đó, HM vuông góc với BC.
* **Bước 4:** Vì HK = HC nên HK là đường trung tuyến của tam giác HKC.
* **Bước 5:** Mặt khác, $\widehat{HKC} = 90^\circ$ nên HK cũng là đường cao của tam giác HKC.
* **Bước 6:** Do đó, HK vuông góc với KC.
* **Bước 7:** Từ bước 3 và bước 6 suy ra H, M, K thẳng hàng.
**c) Từ H kẻ HG vuông góc với BC (G thuộc BC). Lấy điểm I thuộc tia đối của tia GH sao cho GH = GI. Chứng minh tứ giác BCKI là hình thang cân.**
* **Bước 1:** Xét tứ giác BCKI có:
* $\widehat{BKI} = \widehat{CKI} = 90^\circ$ (BK, CK vuông góc với AB, AC)
* $\Rightarrow$ Tứ giác BCKI nội tiếp đường tròn đường kính BC.
* **Bước 2:** Vì BCKI nội tiếp đường tròn đường kính BC nên $\widehat{BIK} = \widehat{BCK}$ (cùng chắn cung BK).
* **Bước 3:** Mặt khác, $\widehat{BCK} = \widehat{HKB}$ (cùng chắn cung HB).
* **Bước 4:** Từ bước 2 và bước 3 suy ra $\widehat{BIK} = \widehat{HKB}$.
* **Bước 5:** Xét tam giác BIK và tam giác BHK có:
* $\widehat{BIK} = \widehat{HKB}$ (chứng minh trên)
* $\widehat{BKI} = \widehat{BKH} = 90^\circ$
* $\Rightarrow$ $\triangle BIK \sim \triangle BHK$ (g.g)
* **Bước 6:** Từ bước 5 suy ra $\frac{BI}{BH} = \frac{BK}{BK} = 1 \Rightarrow BI = BH$.
* **Bước 7:** Mặt khác, GH = GI nên BH = BI = GH + HI = GI + HI = HI.
* **Bước 8:** Do đó, BH = HI.
* **Bước 9:** Xét tứ giác BCKI có:
* BI = BH (chứng minh trên)
* $\widehat{BKI} = \widehat{CKI} = 90^\circ$
* $\Rightarrow$ Tứ giác BCKI là hình thang cân.
**Kết luận:**
* a) Tứ giác BHCK là hình thoi.
* b) H, M, K thẳng hàng.
* c) Tứ giác BCKI là hình thang cân.
a) Đa thức biểu thị số mét khối cần bơm đầy bể trong bể 1 là:
\(1,2\cdot x\cdot y=1,2xy\left(m^3\right)\)
Đa thức biểu thị số mét khối cần bơm đầy bể trong bể 2 là:
\(1,2\cdot5\cdot x\cdot5\cdot y=37,5xy\left(m^3\right)\)
b) Tổng số mét khối nước cần đổ vào 2 bể là:
\(1,2xy+37,5xy=38,7xy\left(m^3\right)\)
Số mét khối nước cần đổ vào bể khi x = 4 m và y = 3 m
\(38,7\cdot4\cdot3=464,4\left(m^3\right)\)
) Đa thức biểu thị số mét khối cần bơm đầy bể trong bể 1 là:
Đa thức biểu thị số mét khối cần bơm đầy bể trong bể 2 là:
b) Tổng số mét khối nước cần đổ vào 2 bể là:
Số mét khối nước cần đổ vào bể khi x = 4 m và y = 3 m
a) Số nhiệt của thành phố A là:
\(I=-45+2\cdot40+10\cdot100-0,2\cdot40\cdot100-0,007\cdot40^2-0,05\cdot100^2+0,001\cdot40^2\cdot100+0,009\cdot40\cdot100^2-0,000002\cdot40^2\cdot100^2\)
\(I=-3345,2\)
b) Số nhiệt của thành phố B là:
\(I=-45+2\cdot50+10\cdot90-0,007\cdot50^2-0,05\cdot90^2+0,001\cdot50^2\cdot90+0,009\cdot50\cdot90^2-0,00000\cdot50^2\cdot90^2\)
\(I=-3780\)
a) Số nhiệt của thành phố A là:
b) Số nhiệt của thành phố B là:
a) Tứ giác là hình chữ nhật (GT)
Suy ra // (hai cạnh đối) nên tứ giác là hình thang.
Mà (góc của hình chữ nhật)
Do đó tứ giác là hình thang vuông.
b) Tứ giác là hình chữ nhật nên // .
Mà , lần lượt là trung điểm của , .
Suy ra // và .
Tứ giác có // và nên tứ giác là hình bình hành (dấu hiệu nhận biết).
c) Gọi là giao điểm của và
Suy ra là trung điểm của và (1) (tính chất đường chéo hình chữ nhật)
Tứ giác là hình bình hành (chứng minh trên).
Suy ra cắt tại trung điểm của (2)
Từ (1) và (2) suy ra là trung điểm của , và .
Hay ba đường thẳng , , cùng đi qua điểm .
Tứ giác là hình chữ nhật (GT)
Suy ra // (hai cạnh đối) nên tứ giác là hình thang.
Mà (góc của hình chữ nhật)
Do đó tứ giác là hình thang vuông.
b) Tứ giác là hình chữ nhật nên // .
Mà , lần lượt là trung điểm của , .
Suy ra // và .
Tứ giác có // và nên tứ giác là hình bình hành (dấu hiệu nhận biết).
c) Gọi là giao điểm của và
Suy ra là trung điểm của và (1) (tính chất đường chéo hình chữ nhật)
Tứ giác là hình bình hành (chứng minh trên).
Suy ra cắt tại trung điểm của (2)
Từ (1) và (2) suy ra là trung điểm của , và .
Hay ba đường thẳng , , cùng đi qua điểm .
a) \(\left(x-2y\right)\left(3xy+6x^2+x\right)\)
\(=x\left(3xy+6x^2+x\right)-2y\left(3xy+6x^2+x\right)\)
\(=3x^2y+6x^3+x^2-6xy^2-12x^2y-2xy\)
\(=6x^3+x^2-9x^2y-6xy^2-2xy\)
b) \(\left(18x^4y^3-24x^3y^4+12x^3y^3\right):\left(-6x^2y^3\right)\)
\(=18x^4y^3:\left(-6x^2y^3\right)-24x^3y^4:\left(-6x^2y^3\right)+12x^3y^3:\left(-6x^2y^3\right)\)
\(=-3x^2+4xy-2x\)
Bài 1:
a) Đa thức P có bậc 3, các hạng tử của đa thức P là \(2x^2y;-3x;8y^2;-1\)
b) Thay \(x=-1;y=\dfrac{1}{2}\) vào đa thức P, ta được:
\(P=2\left(-1\right)^2\cdot\dfrac{1}{2}-3\cdot\left(-1\right)+8\cdot\left(\dfrac{1}{2}\right)^2-1\)
\(P=1+3+2-1\)
\(P=5\)
Bài 2:
\(P+Q=5xy^2-3x^2+2y-1-xy^2+9x^2y-2y+6\)
\(P+Q=4xy^2-3x^2+5+9x^2y\)
\(P-Q=5xy^2-3x^2+2y-1+xy^2-9x^2y+2y-6\)
\(P-Q=-9x^2y+6xy^2-3x^2+4y-7\)
Bài 1:
a) Bậc của đa thức P là: \(2+1=3\)
Các hạng tử của P là: \(2x^2y,-3x,8y^2,-1\)
b) Thay \(x=-1;y=\dfrac{1}{2}\) vào P ta có:
\(P=2\cdot\left(-1\right)^2\cdot\dfrac{1}{2}-3\cdot-1+8\cdot\left(\dfrac{1}{2}\right)^2-1\)
\(P=2\cdot1\cdot\dfrac{1}{2}+3+8\cdot\dfrac{1}{4}-1\)
\(P=1+3+2-1\)
\(P=5\)
a) \(\left(-12x^{13}y^{15}+6x^{10}y^{14}\right):\left(-3x^{10}y^{14}\right)\)
\(=-12x^{13}y^{15}:-3x^{10}y^{14}+6x^{10}y^{14}:-3x^{10}y^{14}\)
\(=4x^3y-2\)
b) \(\left(x-y\right)\left(x^2-2x+y\right)-x^3+x^2y\)
\(=x^3-2x^2+xy-x^2y+2xy-y^2-x^3+x^2y\)
\(=-2x^2+3xy-y^2\)
a) \(-12x^{13}\)\(y^{15}\)+\(6x^{10}\)\(y^{14}\):\(-3x^{10}\)\(y^{14}\)
=\(-12x\)\(^{13}\)\(y^{15}\)\(:\)\(-3x^{10}y^{14}\)\(+6x^{10}y^{14}:-3x^{10}y^{14}\)
\(=4x^3y-2\)
b)\(=\left(x-y\right)x^2-2x+y-x^3+x^2y\)
\(=x^3-x^2y-2x+y-x^3+x^2y\)
\(=-2x+y\)