K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3

Lỗi=#Value

 

6 tháng 3

dap an la khong tinh duoc

 

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

b: Ta có: ΔBAD=ΔBED

=>BA=BE

Xét ΔBEF vuông tại E và ΔBAC vuông tại A có

BE=BA

\(\widehat{EBF}\) chung

Do đó: ΔBEF=ΔBAC

=>BF=BC

=>ΔBFC cân tại B

 

a: Sửa đề: Từ B kẻ đường thẳng vuông góc với Oy cắt Ox tại F

Xét ΔOBF vuông tại B và ΔOAE vuông tại A có

OB=OA

\(\widehat{BOF}\) chung

Do đó: ΔOBF=ΔOAE

=>BF=AE

b: Ta có: ΔOBF=ΔOAE

=>OF=OE và \(\widehat{OEA}=\widehat{OFB}\)

Ta có: OA+AF=OF

OB+BE=OE

mà OA=OB và OF=OE

nên AF=BE

Xét ΔIAF vuông tại A và ΔIBE vuông tại B có

AF=BE

\(\widehat{IFA}=\widehat{IEB}\)

Do đó: ΔIAF=ΔIBE

c: Ta có: ΔIAF=ΔIBE

=>IA=IB

Xét ΔOAI vuông tại A và ΔOBI vuông tại B có

OI chung

OA=OB

Do đó: ΔOAI=ΔOBI

=>\(\widehat{AOI}=\widehat{BOI}\)

=>OI là phân giác của góc AOB

Xét ΔMNP có \(\widehat{PMN}=\widehat{PNM}\)

nên ΔPMN cân tại P

Ta có: \(\widehat{PME}=\dfrac{\widehat{PMN}}{2}\)

\(\widehat{PNF}=\dfrac{\widehat{PNM}}{2}\)

mà \(\widehat{PMN}=\widehat{PNM}\)

nên \(\widehat{PME}=\widehat{PNF}\)

Xét ΔPME và ΔPNF có

\(\widehat{PME}=\widehat{PNF}\)

PM=PN

\(\widehat{MPE}\) chung

Do đó: ΔPME=ΔPNF

=>ME=NF

Gọi A là biến cố"Số xuất hiện trên thẻ là số chính phương"

=>A={1;4;9;16;25;36}

=>n(A)=6

=>\(P\left(A\right)=\dfrac{6}{48}=\dfrac{1}{8}\)

 

a: Xét ΔAMB và ΔDMC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔAMB=ΔDMC

b: Xét ΔMAC và ΔMDB có

MA=MD

\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)

MC=MB

Do đó: ΔMAC=ΔMDB

=>AC=DB

Ta có: ΔMAC=ΔMDB

=>\(\widehat{MAC}=\widehat{MDB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD

c: Xét ΔADC có

CM,DN là các đường trung tuyến

CM cắt DN tại I

Do đó: I là trọng tâm của ΔADC

Xét ΔADC có

I là trọng tâm của ΔADC

DN là đường trung tuyến và CM là đường trung tuyến

Do đó: DI=2IN và \(CI=\dfrac{2}{3}CM=\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot BC=\dfrac{1}{3}\cdot BC\)

a: Ta có: ΔABC vuông tại A

=>\(\widehat{ACB}+\widehat{ABC}=90^0\)

=>\(\widehat{ACB}=90^0-50^0=40^0\)

b: Xét ΔCAD và ΔCED có

CA=CE

\(\widehat{ACD}=\widehat{ECD}\)

CD chung

Do đó: ΔCAD=ΔCED

=>DA=DE
c: Ta có: ΔCAD=ΔCED

=>\(\widehat{CAD}=\widehat{CED}\)

mà \(\widehat{CAD}=90^0\)

nên \(\widehat{CED}=90^0\)

=>DE\(\perp\)CB

Xét ΔDAF vuông tại A và ΔDEB vuông tại E có

DA=DE
\(\widehat{ADF}=\widehat{EDB}\)

Do đó: ΔDAF=ΔDEB

=>DF=DB

=>D nằm trên đường trung trực của BF(1)

Ta có: IF=IB

=>I nằm trên đường trung trực của BF(2)

Ta có: CA+AF=CF
CE+EB=CB

mà CA=CE và AF=EB(ΔDAF=ΔDEB)

nên CF=CB

=>C nằm trên đường trung trực của BF(3)

Từ (1),(2),(3) suy ra C,D,I thẳng hàng

NV
6 tháng 3

a.

Áp dụng tính chất tổng 3 góc trong tam giác:

\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)

\(\Leftrightarrow50^0+\widehat{ACB}+90^0=180^0\)

\(\Leftrightarrow\widehat{ACB}=40^0\)

b.

Xét hai tam giác DCA và DCE có:

\(\left\{{}\begin{matrix}CA=CE\left(gt\right)\\\widehat{DCA}=\widehat{DCE}\left(\text{CD là phân giác}\right)\\CD\text{ là cạnh chung}\end{matrix}\right.\)

\(\Rightarrow\Delta DCA=\Delta DCE\left(c.g.c\right)\)

\(\Rightarrow DE=DA\)

c.

Từ câu b, do \(\Delta DCA=\Delta DCE\Rightarrow\widehat{DEC}=\widehat{DAC}=90^0\)

Xét hai tam giác CAB và CEF có:

\(\left\{{}\begin{matrix}\widehat{CAB}=\widehat{CEF}=90^0\\CA=CE\left(gt\right)\\\widehat{ACE}-chung\end{matrix}\right.\) \(\Rightarrow\Delta CAB=\Delta CEF\left(g.c.g\right)\)

\(\Rightarrow CB=CF\)

\(\Rightarrow\Delta CBF\) cân tại C

Mà I là trung điểm BF \(\Rightarrow CI\) là trung tuyến nên CI đồng thời là phân giác \(\widehat{ACB}\)

\(\Rightarrow\) Đường thẳng CI trùng đường thẳng AD hay C, D, I thẳng hàng

6 tháng 3

Phải được thầy, cô giáo tick cho mới được bạn nhé.

D
datcoder
CTVVIP
6 tháng 3

Em phải trả lời đúng những câu hỏi đồng thời tùy vào mức độ của đề bài mà các CTV và thầy cô sẽ xem xét chấm điểm cho em nha.