giải phương trình sau:
\(2\sqrt{x+2+2\sqrt{x+1}}-\sqrt{x+1}=4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left[\dfrac{\sqrt{x-2}}{\left(\sqrt{x}-1\right)^2}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]\sqrt{x}\left(\sqrt{x}-1\right)=\)
\(=\left[\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\right]\sqrt{x}\left(\sqrt{x}-1\right)=\)
\(=\left[\dfrac{x+\sqrt{x}-2\sqrt{x}-2-x+\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\right]\sqrt{x}\left(\sqrt{x}-1\right)=\)
\(=\left[\dfrac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)}\right]\sqrt{x}\left(\sqrt{x}-1\right)=\)
\(=\dfrac{-2x}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=-\dfrac{2x}{x-1}\)
b/
\(B=-\dfrac{2\left(x-1\right)+2}{x-1}=-2+\dfrac{2}{x-1}\)
Để B nguyên
\(x-1=\left\{-1;-2;1;2\right\}\Rightarrow x=\left[0;-1;2;3\right]\)
Điều kiện
\(3x-1\ge0\Leftrightarrow x\ge\dfrac{1}{3}\)
\(4-x\ge0\Leftrightarrow x\le4\)
Kết hợp 2 đk \(\Rightarrow\dfrac{1}{3}\le x\le4\)
Bình phương 2 vế PT
\(4\left(3x-1\right)=4-x\)
\(\Leftrightarrow12x-4=4-x\Leftrightarrow13x=8\)
\(\Leftrightarrow x=\dfrac{8}{13}\) Đối chiếu với đk thỏa mãn
Thực hiện phép tính:
\(\left(\dfrac{1}{\sqrt{2}-1}-\dfrac{1}{\sqrt{2}+1}\right):\sqrt{3-2\sqrt{2}}\)
(\(\dfrac{1}{\sqrt{2}-1}\) - \(\dfrac{1}{\sqrt{2}+1}\)): \(\sqrt{3-2\sqrt{2}}\)
= \(\dfrac{\sqrt{2}+1-\sqrt{2}+1}{\left(\sqrt{2}-1\right).\left(\sqrt{2}+1\right)}\): \(\sqrt{2-2\sqrt{2}+1}\)
= \(\dfrac{2}{2-1}\).\(\sqrt{\left(\sqrt{2}-1\right)^2}\)
= 2(\(\sqrt{2}\) - 1)
= 2\(\sqrt{2}\) - 2
Lời giải:
Xét modun $3$ của $n$ thì ta dễ dàng thấy $n^2+n+2$ không chia hết cho $3$ với mọi $n$. Do đó $n^2+n+2$ nếu thỏa mãn đề thì chỉ có thể là tích 2 số tự nhiên liên tiếp (nếu từ 3 số tự nhiên liên tiếp thì sẽ chia hết cho 3)
Đặt $n^2+n+2=a(a+1)$ với $a\in\mathbb{N}$
$\Leftrightarrow 4n^2+4n+8=4a^2+4a$
$\Leftrightarrow (2n+1)^2+8=(2a+1)^2$
$\Leftrightarrow 8=(2a+1)^2-(2n+1)^2=(2a-2n)(2a+2n+2)$
$\Leftrightarrow 2=(a-n)(a+n+1)$
Hiển nhiên $a+n+1> a-n$ và $a+n+1>0$ với mọi $a,n\in\mathbb{N}$ nên:
$a+n+1=2; a-n=1$
$\Rightarrow n=0$ (tm)
√(√5 - 3)² + (2 - √5)²
= |√5 - 3| + |2 - √5|
= 3 - √5 + √5 - 2
= 1
\(\sqrt{\left(\sqrt{5}-3\right)^2}\) + \(\sqrt{\left(2-\sqrt{5}\right)^2}\)
= |\(\sqrt{5}\) - 3| + | 2 - \(\sqrt{5}\)|
= 3 - \(\sqrt{5}\) + \(\sqrt{5}\) - 2
= 1
(\(x\) - 2)(\(\sqrt{3x+1}\) ) - 1 = 3\(x\) Đk : 3\(x\) + 1 ≥ 0; \(x\) ≥ - \(\dfrac{1}{3}\)
(\(x\) - 2)(\(\sqrt{3x+1}\)) - (3\(x\) + 1) = 0
\(\sqrt{3x+1}\).(\(x\) - 2 - \(\sqrt{3x+1}\)) = 0
\(\left[{}\begin{matrix}\sqrt{3x+1}=0\\x-2-\sqrt{3x+1}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x-2=\sqrt{3x+1}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x^2-4x+4=3x+1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x^2-7x+3=0\end{matrix}\right.\)
\(x^2\) - 7\(x\) + 3 = 0
△ = 49 -12 = 37
\(x_1\) = \(\dfrac{7+\sqrt{37}}{2}\)
\(x_{_{ }2}\) = \(\dfrac{-7-\sqrt{37}}{2}\) (loại)
2\(\sqrt{x+2+\sqrt{x+1}}\) - \(\sqrt{x+1}\) = 4; Đk \(x\ge\) -1
2\(\sqrt{\left(\sqrt{x+1}\right)^2+2\sqrt{x+1}+1}\) - \(\sqrt{x+1}\) = 4
2\(\sqrt{\left(\sqrt{x+1}+1\right)^2}\) - \(\sqrt{x+1}\) = 4
2(\(\sqrt{x+1}\) + 1) - \(\sqrt{x+1}\) = 4
2\(\sqrt{x+1}\) + 2 - \(\sqrt{x+1}\) = 4
\(\sqrt{x+1}\) = 4 - 2
\(\sqrt{x+1}\) = 2
\(x+1\) = 4
\(x\) = 4 - 1
\(x\) = 3
\(...\Rightarrow2\sqrt[]{x+1+2\sqrt[]{x+1+1}}-\sqrt[]{x+1}=4\left(x\ge-1\right)\)
\(\Rightarrow2\sqrt[]{\left(\sqrt[]{x+1}+1\right)^2}-\sqrt[]{x+1}=4\)
\(\Rightarrow2|\sqrt[]{x+1}+1|-\sqrt[]{x+1}=4\left(1\right)\)
Nếu \(\sqrt[]{x+1}+1\ge0\Rightarrow x\ge-1\)
\(\left(1\right)\Rightarrow2\sqrt[]{x+1}+1-\sqrt[]{x+1}=4\)
\(\Rightarrow\sqrt[]{x+1}=3\Rightarrow x+1=9\Rightarrow x=8\)
Nếu \(\sqrt[]{x+1}+1\le0\Rightarrow x\in\varnothing\)
Vậy \(x=8\)