Tìm x,y thỏa mãn
(X2+1)2×(x2+y2)2=4x2y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\dfrac{x^4+x}{x^2-x+1}+1-\dfrac{2x^2+x}{x}\)
\(A=\dfrac{x.\left(x^3+1\right)}{x^2-x+1}+1-\dfrac{x.\left(2x+1\right)}{x}\)
\(A=\dfrac{x.\left(x+1\right).\left(x^2-x+1\right)}{x^2-x+1}+1-\left(2x+1\right)\)
\(A=x\left(x+1\right)+1-2x-1\)
\(A=x^2+x-2x=x^2-x\)
b) \(A=6\)
\(\Leftrightarrow x^2-x=6\)
\(\Leftrightarrow x^2-x-6=0\)\(\)
\(\Leftrightarrow\left(x-3\right)\left(x+2\right)=0\)
\(\Leftrightarrow x-3=0\) hay \(x+2=0\)
\(\Leftrightarrow x=3\) hay \(x=-2\)
c) \(A=x^2-x\)
\(A=x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\)
\(A=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)
mà \(\left(x-\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow A=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)
\(\Rightarrow Min\left(A\right)=-\dfrac{1}{4}\)
a/
\(AQ\perp AB;PH\perp AB\) => AQ//PH
\(AP\perp AC;QH\perp AC\) => AP//QH
=> APHQ là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
Ta có \(\widehat{A}=90^o\)
=> APHQ là hình chữ nhật (Hình bình hành có 1 góc vuông là HCN)
b/
Xét tg vuông QHC có
KH=KC (gt)
\(\Rightarrow QK=\dfrac{AC}{2}\) (Trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
Mà \(KH=KC=\dfrac{HC}{2}\)
=> QK=KH => tg KQH cân tại K
a) Ta thấy \(\dfrac{EA}{EK}=\dfrac{ED}{EB}=\dfrac{EG}{EA}\) nên \(AE^2=EK.EG\) (đpcm)
b) Ta có \(\dfrac{AE}{AK}+\dfrac{AE}{AG}=\dfrac{DE}{DB}+\dfrac{BE}{BD}=\dfrac{DE+BE}{BD}=1\) nên suy ra \(\dfrac{1}{AE}=\dfrac{1}{AK}+\dfrac{1}{AG}\) (đpcm)
a) Xét ∆CMA và ∆BMD:
Góc CMA= góc BMD (đối đỉnh)
MA=MD (gt)
MC=MB (M là trung điểm BC)
=> ∆CMA=∆BMD(c.g.c)
=> góc CAM = góc BDM và CA=DB
Mà 2 góc CAM và góc BDM nằm ở vị trí so lo trong nên CA//DB
=> CABD là hình bình hành
Lại có góc CAB = 90 độ (gt)
=> ACDB là hình chữ nhật
b) Vì E là điểm đối xứng của C qua A nên EAB=90độ=DBA
Mà 2 góc này ở bị trí so le trong nên AE//DB
Lại có AE=BD(=CA)
=> AEBD là hình bình hành
Gọi \(x\left(m\right)\left(x>0\right)\) là chiều rộng
\(x+10\left(m\right)\) là chiều dài
Theo đề, ta có pt :
\(\left(x+10+6\right)\left(x-3\right)=x\left(x+10\right)+42\)
\(\Leftrightarrow\left(x+16\right)\left(x-3\right)=x^2+10x+42\)
\(\Leftrightarrow x^2-3x+16x-48=x^2+10x+42\)
\(\Leftrightarrow3x=90\\ \Leftrightarrow x=30\left(tmdk\right)\)
Chiều dài khu đất là : \(30+10=40\left(m\right)\)
Vậy chiều rộng là \(30m\), chiều dài là \(40m\).
\(-\left(\dfrac{a-1}{a+1}-\dfrac{a}{a-1}-\dfrac{3a+1}{1-a^2}\right):\dfrac{2a+1}{a^2-1}\\ =-\left(\dfrac{a-1}{a+1}-\dfrac{a}{a-1}+\dfrac{3a+1}{a^2-1}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\left(\dfrac{a-1}{a+1}-\dfrac{a}{a-1}+\dfrac{3a-1}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\left(\dfrac{\left(a-1\right)^2}{\left(a+1\right)\left(a-1\right)}-\dfrac{a\left(a+1\right)}{\left(a-1\right)\left(a+1\right)}+\dfrac{3a+1}{\left(x-1\right)\left(x+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\left(\dfrac{\left(a-1\right)^2-a\left(a+1\right)+3a+1}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\)\(=-\left(\dfrac{a^2-2a+1-\left(a^2+a\right)+3a+1}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\left(\dfrac{a^2-2a+1-a^2-a+3a+1}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\left(\dfrac{2}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =\dfrac{-2.\left(a-1\right)\left(a+1\right)}{\left(a-1\right)\left(a+1\right).\left(2a+1\right)}\\ =-\dfrac{2}{2a+1}\)
__
\(-\dfrac{2}{2a+1}=\dfrac{3}{a-1}\\ \Leftrightarrow-2\left(a-1\right)=3\left(2a+1\right)\\ \Leftrightarrow-2a+2-6a-3=0\\ \Leftrightarrow-8a-1=0\\ \Leftrightarrow-8a=1\\ \Leftrightarrow a=-\dfrac{1}{8}\)
\(x^3\) + 125 + (\(x\) + 5)(\(x\) - 25) = 0
(\(x^3\) + 53) + (\(x\) + 5)(\(x\) - 25) = 0
(\(x\) + 5)(\(x^2\) - 5\(x\) + 25) + (\(x\) + 5)(\(x\) - 25) =0
(\(x\) + 5)(\(x^2\) - 5\(x\) + 25 + \(x\) - 25) = 0
(\(x\) + 5)(\(x^2\) - 4\(x\)) = 0
\(x\)(\(x\) + 5)(\(x\) - 4) = 0
\(\left[{}\begin{matrix}x=0\\x+5=0\\x-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-5\\x=4\end{matrix}\right.\)
\(-\left(\dfrac{a-1}{a+1}-\dfrac{a}{a-1}-\dfrac{3a+1}{1-a^2}\right):\dfrac{2a+1}{a^2-1}\left(dk:a\ne1,a\ne-1\right)\)
\(=-\left(\dfrac{a-1}{a+1}-\dfrac{a}{a-1}+\dfrac{3a+1}{a^2-1}\right):\dfrac{2a+1}{\left(a-1\right)\left(a+1\right)}\\ =-\left(\dfrac{\left(a-1\right)^2-a\left(a+1\right)+3a+1}{\left(a-1\right)\left(a+1\right)}\right).\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\\ =-\dfrac{a^2-2a+1-a^2-a+3a+1}{\left(a-1\right)\left(a+1\right)}.\dfrac{\left(a-1\right)\left(a+1\right)}{2a+1}\)
\(=-\dfrac{2}{2a+1}\)
Bạn nên gõ đề bằng công thức toán để được hỗ trợ tốt hơn. Viết như thế kia rất khó đọc.
$x,y$ có điều kiện gì không bạn?
Bạn xem lại đề có đúng không?