K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

giúp mình với mình cần nộp trong ngày 17/2/2020

13 tháng 2 2020

giúp mình với mình cần nộp trong ngày 17/2/2020

13 tháng 2 2020

x=2,y=-1

13 tháng 2 2020

giúp mình với mình cần nộp trong ngày 17/2/2020

13 tháng 2 2020

0.5842496656

Mà cậu bấm máy tính là ra mà ^^

13 tháng 2 2020

x=2 y=3

13 tháng 2 2020

giúp mình với mình cần nộp trong ngày 17/2/2020

14 tháng 2 2020

 Chuyên đề Toán lớp 9

Xét đường tròn tâm (O) có AM=BN

Từ đó ta suy ra OE=OD (tính chất quan hệ giữa đường kính và dây cung)

Xét tam giác vuông AOD và tam giác vuông BOE có:

OA=OB(cùng bằng bán kính)

OE=OD(chứng minh trên)

=> ΔAOD = ΔBOE (cạnh huyền-cạnh góc vuông)

=> ∠O1 = ∠O4 (2 góc tương ứng)(1)

Tương tự ta có: ∠O2 = ∠O3 (2)

Ta có: ∠AOC = ∠O1 + ∠O2

∠BOC = ∠O3 + ∠O4

Từ (1) và (2) ta suy ra ∠AOC= ∠BOC

Suy ra OC là tia phân giác của góc AOB.

Xét tam giác OBF và tam giác OAF có:

∠AOC = ∠BOC (chứng minh trên)

OA=OB

OF: chung

Suy ra ΔOBF = ΔOAF (c-g-c)

=> BF=AF( 2 cạnh tương ứng)

=> OC ⊥ AB

16 tháng 7 2020

A M N B H C K O 1 2 3 4

a. Kẻ \(OH\perp AM ; OK\perp AN\)

Ta có: AM = AN ( gt )

Suy ra: OH = OK ( hai dây bằng nhau cách đều tâm )

Xét hai tam giác OCH và OCK, ta có :

\(\widehat{OHC}=\widehat{OKC}=90^o\)

OC chung

OH = OK (chứng minh trên)

Suy ra:  \(\Delta OIH=\Delta OIK\)( cạnh huyền, cạnh góc vuông )

Xét hai tam giác OAH và OBH, ta có :

\(\widehat{OHA}=\widehat{OHB}=90^o\)

OA = OB

OH = OK (chứng minh trên)

Suy ra:  \(\Delta OAH=\Delta OBH\)( cạnh huyền, cạnh góc vuông )

\(\widehat{O_3}=\widehat{O_4}\)

Suy ra : \(\widehat{O_1}+\widehat{O_3}=\widehat{O_2}+\widehat{O_4}\)hay \(\widehat{AOC}=\widehat{BOC}\)

Vậy OC là tia phân giác của \(\widehat{AOB}\)

b. Tam giác OAB cân tại O có OC là tia phân giác nên OC đồng thời cũng là đường cao ( tính chất tam giác cân )

Suy ra: \(OC\perp AB\)

\(\hept{\begin{cases}3xy^2=x^2+20\left(1\right)\\3yx^2=y^2+20\left(2\right)\end{cases}}\)

Lấy (1) trừ (2) ta đựợc:

\(-3xy\left(x-y\right)=\left(x-y\right)\left(x+y\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x+y+3xy\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\x+y=-3xy\end{cases}}\)

Với x=y 

\(\left(1\right)\Leftrightarrow3x^3=x^2+20\)

\(\Leftrightarrow3x^3-x^2-20=0\)(đến đây dùng casio là ra nghiệm nhé :P)

Với x+y=-3xy

\(\left(1\right)\Leftrightarrow y\left(-x-y\right)=x^2+20\)

\(\Leftrightarrow x^2+xy+y^2+20=0\)

\(\Leftrightarrow\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+20=0\)(vô lí)

Vậy........