Cho hình bình hành $ABCD$ đường thẳng $a$ đi qua $A$ lần lượt cắt $BD$, $BC$, $DC$ tại $E$, $K$, $G$. Chứng minh rằng:
a) $AE^2=EK.EG$;
b) $\dfrac{1}{AE}=\dfrac{1}{AK}+\dfrac{1}{AG}$;
c) Khi $a$ thay đổi thì tích $BK.DG$ có giá trị không đổi?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3n là bội của n+3
=> 3n chia hết cho (n+3)
=> 3(n+3)-9 chia hết cho (n+3)
=> 9 chia hết cho (n+3)
=> n+3 thuộc Ư(9)
Với n là số nguyên dương
=> n+3 >= 4 và n+3 nguyên
Do đó n+3 = 9
=> n=6
3N là bội của N + 3
⇒ 3N ⋮ N + 3
⇒ 3N + 9 - 9 ⋮ N + 3
⇒ 3(N + 3) - 9 ⋮ N + 3
⇒ 9 ⋮ N + 3
⇒ N + 3 ∈ Ư(9) = {1; -1; 3; -3; 9; -9}
⇒ N ∈ {-2; -4; 0; -6; 6; -12}
Mà N là số nguyên dương nên N = 6
Vậy: ...
Qua vẽ đường thẳng song song với cắt tại và cắt tại .
Khi đó
có // suy ra (1)
có // suy ra (2)
Từ (1) và (2) ta có (*)
Chứng minh tương tự ta cũng có:
có // suy ra (3)
có // suy ra (4)
Từ (3) và (4) ta có (**)
Từ (*) và (**) ta có (đpcm).
Qua vẽ đường thẳng song song với cắt tại và cắt tại .
Khi đó
có // suy ra (1)
có // suy ra (2)
Từ (1) và (2) ta có (*)
Chứng minh tương tự ta cũng có:
có // suy ra (3)
có // suy ra (4)
Từ (3) và (4) ta có (**)
Từ (*) và (**) ta có (đpcm).
Em xem lại đề bài xem đã đăng đúng và đủ chưa em nhé!
a) Để \(\dfrac{n-2}{4}\) là một số nguyên thì:
\(\Rightarrow n-2\) ⋮ 4
\(\Rightarrow n-2\in B\left(4\right)\)
\(\Rightarrow n\in B\left(4\right)+2=\left\{2;6;10;14;18;...\right\}\)
b) \(\dfrac{n+5}{n+2}=\dfrac{n+2+3}{n+2}=\dfrac{n+2}{n+2}+\dfrac{3}{n+2}=1+\dfrac{3}{n+2}\left(n\ne-2\right)\)
Để \(\dfrac{n+5}{n+2}\) là một số nguyên thì \(\dfrac{3}{n+2}\) nguyên:
\(\Rightarrow\text{3}\) ⋮ \(n+2\)
\(\Rightarrow n+2\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow n\in\left\{-1;-3;1;-5\right\}\)
c) \(\dfrac{n-4}{n+1}=\dfrac{n+1-5}{n+1}=\dfrac{n+1}{n+1}-\dfrac{5}{n+1}=1-\dfrac{5}{n+1}\left(n\ne-1\right)\)
Để \(\dfrac{n-4}{n+1}\) là một số nguyên thì \(\dfrac{5}{n+1}\) nguyên
\(\Rightarrow5\) ⋮ \(n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)
\(\Rightarrow n\in\left\{0;-2;4;-6\right\}\)
A = \(\dfrac{n+5}{n}\) đk n \(\ne\) 0
A \(\in\) Z ⇔ n + 5 ⋮ n
5 ⋮ n
n \(\in\) Ư(5)
5 = 5 ⇒ Ư(5) = {-5; -1; 1; 5}
⇒ n \(\in\) {-5; -1; 1; 5}
Kết luận để phân số có giá trị nguyên thì n \(\in\) {-5; -1; 1; 5}
\(\dfrac{-2}{-5}=\dfrac{\left(-2\right).\left(-1\right)}{\left(-5\right).\left(-1\right)}=\dfrac{2}{5};\\ \dfrac{-17}{a-3}\left(ĐK:a-3< 0,hay:a< 3\right)=\dfrac{\left(-17\right).\left(-1\right)}{\left(a-3\right).\left(-1\right)}=\dfrac{17}{3-a}\)
a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)
Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)
Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.
b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1
Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED
����+��=����+��AE+EKAE=ED+EBED
����=����AKAE=DBED (3)
Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE
����+��=����+��AE+EGAE=BE+EDBE
����=����AGAE=BDBE (4)
Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.
c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.
Suy ra ��=��.����DG=KCAD.CG
Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.
a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)
Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)
Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.
b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1
Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED
����+��=����+��AE+EKAE=ED+EBED
����=����AKAE=DBED (3)
Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE
����+��=����+��AE+EGAE=BE+EDBE
����=����AGAE=BDBE (4)
Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.
c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.
Suy ra ��=��.����DG=KCAD.CG
Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.
a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)
Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)
Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.
b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1
Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED
����+��=����+��AE+EKAE=ED+EBED
����=����AKAE=DBED (3)
Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE
����+��=����+��AE+EGAE=BE+EDBE
����=����AGAE=BDBE (4)
Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.
c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.
Suy ra ��=��.����DG=KCAD.CG
Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.
a) Δ���ΔABE có ��AM // ��DG suy ra ����=����EGAE=EDEB (1)
Δ���ΔADE có ��AD // ��BK suy ra ����=����EDEB=EAEK (2)
Từ (1) và (2) ta có ����=����EGAE=EAEK nên ��2=��.��AE2=EK.EG.
b) Từ 1��=1��+1��AE1=AK1+AG1 suy ra ����+����=1AKAE+AGAE=1
Δ���ΔADE có ��AD // ��BC suy ra ����=����EKAE=EBED
����+��=����+��AE+EKAE=ED+EBED
����=����AKAE=DBED (3)
Tương tự Δ���ΔAEB có ��AB // ��DG suy ra ����=����EGAE=EDBE
����+��=����+��AE+EGAE=BE+EDBE
����=����AGAE=BDBE (4)
Khi đó ����+����=����+����=1AKAE+AGAE=BDED+BDBE=1.
c) Ta có ����=����KCBK=CGAB suy ra ��=��.����BK=CGKC.AB và ����=����ADKC=DGCG.
Suy ra ��=��.����DG=KCAD.CG
Nhân theo vế ta được ��.��=��.��BK.DG=AB.AD không đổi.