K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAEF có AE=AF
nên ΔAEF cân tại A

b: ΔAEF cân tại A

=>\(\widehat{AEF}=\widehat{AFE}=\dfrac{180^0-\widehat{FAE}}{2}=\dfrac{180^0-80^0}{2}=50^0\)

c: Xét ΔABC có \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

nên EF//BC

Qua B, kẻ Bm//a//b(tia Bm nằm giữa hai tia BA và BC)

Bm//Aa

=>\(\widehat{mBA}=\widehat{aAB}=40^0\)

Ta có: Bm//Cb

=>\(\widehat{mBC}=\widehat{bCB}=180^0-130^0=50^0\)

\(\widehat{ABC}=\widehat{mBA}+\widehat{mBC}=40^0+50^0=90^0\)

16 tháng 8

loading...

16 tháng 8

Giá tiền 1 chiếc ti vi đã giảm vào tháng 8 là :

\(8000.000.\left(100\%-5\%\right)=7.600.000\left(đồng\right)\)

Phần trăm siêu thị đã giảm cho 1 chiếc ti vi so với tháng 8 :

\(\dfrac{7.600.000-6.840.000}{7.6000.000}.100\%=10\%\)

Đáp số...

16 tháng 8

Hình đâu em?

15 tháng 8

Bài 8:

a) Ta có:

\(\widehat{N_1}+\widehat{N_2}=180^o\\ =>\widehat{N_1}=180^o-\widehat{N_2}=180^o-125^o=55^o\)

\(\widehat{M_1}=\widehat{N_1}=55^o\)

Mà hai góc này ở vị trí đồng vị 

`=>x`//`y`

b) Ta có:

\(\widehat{P_1}+\widehat{P_2}=180^o\\ =>\widehat{P_1}=180^o-\widehat{P_2}=180^o-140^o=40^o\)

\(\widehat{P_1}=\widehat{Q_1}=40^o\)

Mà hai góc này ở vị trí đồng vị 

`=>a`//`b` 

bài 1:

a: 

\(\dfrac{15}{8}=1,875;-\dfrac{99}{20}=-4,95;\dfrac{40}{9}=4,\left(4\right);-\dfrac{44}{7}=-6,\left(285714\right)\)

b: Các số thập phân vô hạn tuần hoàn là:

4,(4); (-6,285714)

Bài 7: Độ dài đường chéo hình vuông là:

\(\sqrt{5^2+5^2}=\sqrt{25+25}=\sqrt{50}=5\sqrt{2}\left(cm\right)\)

Bài 6: Diện tích sân là:

\(10125000:125000=81\left(m^2\right)\)

Chiều dài cạnh của sân là: \(\sqrt{81}=9\left(m\right)\)

15 tháng 8

Ta có:

`(x+2)^2>=0` với mọi x

`|2y-3|>=0` với mọi y

`=>A=(x+2)^2+|2y-3|+2024>=2024` với mọi x,y

Dấu "=" xảy ra: 

`x+2=0` và `2y-3=0`

`<=>x=-2` và `2y=3`

`<=>x=-2` và y=3/2`

15 tháng 8

\(a,-0,25+\dfrac{2}{3}=-\dfrac{3}{4}+\dfrac{2}{3}=-\dfrac{9}{12}+\dfrac{8}{12}=-\dfrac{1}{12}\\ b,1\dfrac{4}{23}+\dfrac{-5}{21}-\dfrac{4}{23}+0,5-\dfrac{16}{21}\\ =\left(\dfrac{27}{23}-\dfrac{4}{23}\right)+\left(-\dfrac{5}{21}-\dfrac{16}{21}\right)+0,5\\ =\dfrac{23}{23}-\dfrac{21}{21}+0,5\\ =1-1+0,5\\ =0,5\\ c,2-\left[\left(1-\dfrac{1}{3}\right)^{12}:\left(\dfrac{2}{3}\right)^{10}-1\dfrac{4}{9}-2024^0\right]\\ =2-\left[\left(\dfrac{2}{3}\right)^{12}:\left(\dfrac{2}{3}\right)^{10}-\dfrac{13}{9}-1\right]\\ =2-\left[\dfrac{4}{9}-\dfrac{13}{9}-\dfrac{9}{9}\right]\\ =2-\left(-2\right)\\ =4\)

15 tháng 8

\(a,-0,25+\dfrac{2}{3}\\ =-\dfrac{1}{4}+\dfrac{2}{3}\\ =\dfrac{-3}{12}+\dfrac{8}{12}\\ =\dfrac{5}{12}\\ b,1\dfrac{4}{23}+\dfrac{-5}{21}-\dfrac{4}{23}+0,5-\dfrac{16}{21}\\ =1+\left(\dfrac{4}{23}-\dfrac{4}{23}\right)+\left(\dfrac{-5}{21}-\dfrac{16}{21}\right)+\dfrac{1}{2}\\ =1+\dfrac{-21}{21}+\dfrac{1}{2}\\ =1-1+\dfrac{1}{2}\\ =\dfrac{1}{2}\\ c,2-\left[\left(1-\dfrac{1}{3}\right)^{12}:\left(\dfrac{2}{3}\right)^{10}-1\dfrac{4}{9}-2024^0\right]\\ =2-\left[\left(\dfrac{2}{3}\right)^{12}:\left(\dfrac{2}{3}\right)^{10}-1-\dfrac{4}{9}-1\right]\\ =2-\left[\left(\dfrac{2}{3}\right)^2-2-\dfrac{4}{9}\right]\\ =2-\left(\dfrac{4}{9}-2-\dfrac{4}{9}\right)\\ =2+2\\ =4\)

\(\left|x-1\right|>=0\forall x;\left(x+y-2\right)^{2024}>=0\forall x,y\)

Do đó: \(\left|x-1\right|+\left(x+y-2\right)^{2024}>=0\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\x+y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-x+2=-1+2=1\end{matrix}\right.\)

Thay x=1;y=1 vào Q, ta được:

\(Q=1^{2024}+1^{2024}=1+1=2\)

 

15 tháng 8

\(\left|x-1\right|+\left(x+y-2\right)^{2024}=0\)

Do \(\left|x-1\right|\ge0;\left(x+y-2\right)^{2024}\ge0,\forall x;y\in R\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=0\\x+y-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

\(Q=x^{2024}+y^{2024}=1^{2024}+1^{2024}=2\)

15 tháng 8

Lấy mẫu số, chứ không phải lấy tử số em nhé!

15 tháng 8

tất cả các số âm hay dương gì đều lấy mẫu số ạ?