2^2 + 3^2 =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
$\frac{18}{117}\times\frac{12}{113}+\frac{12}{113}\times\frac{8}{117}+\frac{26}{117}+\frac{101}{113}$
$=\frac{12}{113}\times\left(\frac{18}{117}+\frac{8}{117}\right)+\frac{26}{117}+\frac{101}{113}$
$=\frac{12}{113}\times\frac{26}{117}+\frac{26}{117}+\frac{101}{113}$
$=\frac{26}{117}\times\left(\frac{12}{113}+1\right)+\frac{101}{113}$
$=\frac{26}{117}\times \frac{125}{113}+\frac{101}{113}$
$=\frac{250}{1017}+\frac{101}{113}=\frac{1159}{1017}$
\(\dfrac{18}{117}\times\dfrac{12}{113}+\dfrac{12}{113}\times\dfrac{8}{177}+\dfrac{26}{117}\times\dfrac{101}{113}\)
\(=\left(\dfrac{18}{177}+\dfrac{8}{177}\right)\times\dfrac{12}{113}+\dfrac{26}{117}\times\dfrac{101}{113}\)
\(=\dfrac{26}{177}\times\dfrac{12}{113}+\dfrac{26}{117}\times\dfrac{101}{113}\)
\(=\dfrac{26}{177}\times\left(\dfrac{12}{113}+\dfrac{101}{113}\right)\)
\(=\dfrac{26}{177}\times1\)
\(=\dfrac{26}{117}\)
Đặt A=12!+13!+14!+...+1100!𝐴=12!+13!+14!+...+1100!
Ta thấy:
12!=11.2;13!=11.2.3<12.3;...;1100!=11.2...100<199.10012!=11.2;13!=11.2.3<12.3;...;1100!=11.2...100<199.100
Cộng vế với vế ta được:
A<11.2+12.3+13.4+...+199.100𝐴<11.2+12.3+13.4+...+199.100
⇒A<1−12+12−13+...+199−1100⇒𝐴<1−12+12−13+...+199−1100
⇒A<1−1100<1⇒𝐴<1−1100<1
Vậy 12!+13!+14!+...+1100!<112!+13!+14!+...+1100!<1 (Đpcm)
A = 5100 - 599 + 598 - 597 + ... + 52 - 5
5A = 5101 - 5100 + 599 - 598 + ... + 53 - 52
5A + A = 5101 - 5
6A = 5101 - 5
A = \(\dfrac{5^{101}-5}{6}\)
\(7B=7^2+7^3+...+7^{100}\)
\(7B-B=7^2+7^3+...+7^{100}-\left(7+7^2+...+7^{99}\right)=7^{100}-7\)
\(\Rightarrow B=\dfrac{7^{100}-7}{6}\)
D phải bằng một biểu thức nào nữa chứ em ha!
\(3A=3+3^2+3^3+...+3^{2025}\)
\(3A-A=3+3^2+3^3+...+3^{2025}-\left(1+3+3^2+...+3^{2024}\right)=-1+3^{2025}\)
\(A=\dfrac{-1+3^{2025}}{2}\)
`#3107.101107`
\(\left(3^2\right)^4\div27\\ =3^{2\cdot4}\div3^3\\ =3^8\div3^3\\ =3^{8-3}=3^5\)
\(\dfrac{\left(3^2\right)^4}{27}=\dfrac{3^{2\cdot4}}{27}=\dfrac{3^8}{3^3}=3^{8-3}=3^5\)
a, \(\dfrac{1}{2}< \dfrac{12}{a}< \dfrac{4}{3}\Leftrightarrow\dfrac{1}{24}< \dfrac{1}{a}< \dfrac{1}{9}\Leftrightarrow9< a< 24\)
b, \(\dfrac{14}{5}< \dfrac{a}{5}< 4\Leftrightarrow14< a< 20\)
a) \(\dfrac{1}{2}< \dfrac{12}{a}< \dfrac{4}{3}\)
\(6\cdot\dfrac{1}{2}< 6\cdot\dfrac{12}{a}< 6\cdot\dfrac{4}{3}\)
\(3< \dfrac{72}{a}< 8\)
\(\dfrac{72}{3}>a>\dfrac{72}{8}\)
\(24>a>9\)
Vậy: ...
b) \(\dfrac{14}{5}< \dfrac{a}{5}< 4\)
\(\dfrac{14}{5}\times5< a< 5\times4\)
\(14< a< 20\)
22 + 32=4 + 9 = 13
= 4 + 8
=12