Cho tgiac ABC,M là trung điểm của BC.Trên tia đối của tia MA lấy điểm E sao cho ME=MA.
1.Chứng minh AC=EB và AC//EB
2.Gọi I là 1 điểm trên AC;K là 1 điểm trên EB sao cho AI=EK.Chứng minh 3 điểm I,M,K thẳng hàng.
Giai giup to voi aa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do ∆ABC cân tại A (gt)
⇒ AB = AC (1)
Do M là trung điểm của AB (gt)
⇒ AM = BM = AB : 2 (2)
Do N là trung điểm của AC (gt)
⇒ AN = CN = AC : 2 (3)
Từ (1), (2) và (3) ⇒ AM = AN
b) Xét ∆AGN và ∆CKN có:
AN = CN (cmt)
∠ANG = ∠CNK (đối đỉnh)
GN = NK (gt)
⇒ ∆AGN = ∆CKN (c-g-c)
⇒ ∠AGN = ∠CKN (hai góc tương ứng)
Mà ∠AGN và ∠CKN là hai góc so le trong
⇒ AG // CK
c) Do NG = NK (gt)
⇒ N là trung điểm của GK
⇒ GK = 2GN (4)
Do M là trung điểm của AB (gt)
N là trung điểm của AC (gt)
⇒ BN và CM là hai đường trung tuyến của ∆ABC
Mà BN cắt CM tại G (gt)
⇒ G là trọng tâm của ∆ABC
⇒ BG = 2GN (5)
Từ (4) và (5) ⇒ BG = GK
d) Do ∆AGN = ∆CKN (cmt)
⇒ AG = CK (hai cạnh tương ứng)
Do BG = 2GN (cmt)
GK = 2GN (cmt)
⇒ BG + GK = 4GN
⇒ BK = 4GN
∆BCK có:
BC + CK > BK (bất đẳng thức tam giác)
⇒ BC + CK > 4GN
Mà CK = AG (cmt)
⇒ BC + AG > 4GN
Vì 5\(x^4\) là hạng tử có chứa bậc cao nhất của đa thức nên bậc của hạng tử này là bậc của đa thức
bậc của hạng tử này là 4
Vậy bậc của đa thức là 4
Chọn B.4
a: Xét ΔMNI có MN<MI<NI
mà \(\widehat{MIN};\widehat{MNI};\widehat{NMI}\) lần lượt là góc đối diện của các cạnh MN,MI,NI
nên \(\widehat{MIN}< \widehat{MNI}< \widehat{NMI}\)
b: Xét ΔNID có
IM,DK là các đường trung tuyến
IM cắt DK tại E
Do đó: E là trọng tâm của ΔNID
=>\(IE=\dfrac{2}{3}IM=\dfrac{2}{3}\cdot16=\dfrac{32}{3}\left(cm\right)\)
IE+EM=IM
=>\(EM+\dfrac{32}{3}=16\)
=>\(EM=\dfrac{16}{3}\left(cm\right)\)
Hai lần hiệu của a và b là:
\(2\left(a-b\right)=2a-2b\)
Câu 6:
a: Đặt M(x)=0
=>\(2x-\dfrac{1}{2}=0\)
=>\(2x=\dfrac{1}{2}\)
=>\(x=\dfrac{1}{4}\)
b: Đặt N(x)=0
=>\(\left(x+5\right)\left(4x^2-1\right)=0\)
=>(x+5)(2x-1)(2x+1)=0
=>\(\left[{}\begin{matrix}x+5=0\\2x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
c: Đặt P(x)=0
=>\(9x^3-25x=0\)
=>\(x\cdot\left(9x^2-25\right)=0\)
=>x(3x-5)(3x+5)=0
=>\(\left[{}\begin{matrix}x=0\\3x-5=0\\3x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{3}\\x=-\dfrac{5}{3}\end{matrix}\right.\)
Câu 7:
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của góc BAC
b: Xét ΔBDE và ΔBHA có
BD=BH
\(\widehat{DBE}=\widehat{HBA}\)(hai góc đối đỉnh)
BE=BA
Do đó: ΔBDE=ΔBHA
=>\(\widehat{BDE}=\widehat{BHA}\)
=>AH//DE
c: Ta có: AH=DE
mà AH<AD(ΔAHD vuông tại H)
nên DE<DA
Xét ΔDAE có DE<DA
mà \(\widehat{DAE};\widehat{DEA}\) lần lượt là góc đối diện của các cạnh DE,DA
nên \(\widehat{DAE}< \widehat{DEA}\)
=>\(\widehat{DAB}< \widehat{BAH}\)
a: Cô An hơn Tuấn:
2014-1986=28(tuổi)
b: Gọi số năm nữa để tuổi cô An gấp 5 lần tuổi Tuấn là x(năm)
(Điều kiện: x>0)
Tuổi của cô An vào năm 2014 là 28(tuổi)
Tuổi của cô An sau x năm nữa là x+28(tuổi)
Tuổi của Tuấn sau x năm nữa là x(tuổi)
Theo đề, ta có:
5x=x+28
=>4x=28
=>x=7
Năm mà tuổi cô An gấp 5 lần tuổi tuấn là:
2014+7=2021
Khi đó, Tuấn 7 tuổi
Bài 3:
a: Xét ΔCAB vuông tại A và ΔCAE vuông tại A có
CA chung
AB=AE
Do đó: ΔCAB=ΔCAE
b: Xét ΔCEB có
CA,BH là các đường trung tuyến
CA cắt BH tại M
Do đó: M là trọng tâm của ΔCEB
=>\(CM=\dfrac{2}{3}CA=\dfrac{2}{3}\cdot18=12\left(cm\right)\)
c: Xét ΔCEB có
A là trung điểm của BE
AK//CE
Do đó: K là trung điểm của CB
Xét ΔCEB có
M là trọng tâm
K là trung điểm của CB
Do đó: E,M,K thẳng hàng
1: Xét ΔMAC và ΔMEB có
MA=ME
\(\widehat{AMC}=\widehat{EMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMEB
=>AC=BE
ΔMAC=ΔMEB
=>\(\widehat{MAC}=\widehat{MEB}\)
=>AC//EB
b: Xét ΔIAM và ΔKEM có
IA=KE
\(\widehat{IAM}=\widehat{KEM}\)
AM=ME
Do đó: ΔIAM=ΔKEM
=>\(\widehat{IMA}=\widehat{KME}\)
mà \(\widehat{IMA}+\widehat{IME}=180^0\)(hai góc kề bù)
nên \(\widehat{KME}+\widehat{IME}=180^0\)
=>I,M,K thẳng hàng