K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Trên tia Ox, ta có: OA<OB

nên A nằm giữa O và B

b: A nằm giữa O và B

=>OA+AB=OB

=>AB+3=6

=>AB=3(cm)

c: Vì A nằm giữa O và B

nên AO và AB là hai tia đối nhau

=>AO và Ax là hai tia đối nhau

Trên tia AO, ta có: AO<AM

nên O nằm giữa A và M

=>AO+OM=AM

=>OM+3=6

=>OM=3(cm)

=>OM=OA(=3cm)
loading...

a: Trên tia Ox, ta có: OA<OB

nên A nằm giữa O và B

b: A nằm giữa O và B

=>OA+AB=OB

=>AB+3=6

=>AB=3(cm)

c: Vì A nằm giữa O và B

nên AO và AB là hai tia đối nhau

=>AO và Ax là hai tia đối nhau

Trên tia AO, ta có: AO<AM

nên O nằm giữa A và M

=>AO+OM=AM

=>OM+3=6

=>OM=3(cm)

=>OM=OA(=3cm)

Số lần khối lượng mặt trời gấp khối lượng trái đất là:

\(\dfrac{1998550\cdot10^{21}}{6\cdot10^{21}}=\dfrac{999275}{3}\left(lần\right)\)

3 tháng 7 2024

Gọi x là thương của phép chia \(\left(x\inℕ\right)\)

Theo đề bai ta có:

\(a:28=x\) (dư 14)

\(\Rightarrow a=28\cdot x+14\)

\(\Rightarrow a=14\cdot\left(2\cdot x+1\right)\)

Nhận xét:

+) Vì \(14⋮2\) nên \(14\cdot\left(2\cdot x+1\right)⋮2\)

hay \(a⋮2\)

+) Vì \(14⋮14\) nên \(14\cdot\left(2\cdot x+1\right)⋮14\)

hay \(a⋮14\)

Vậy...

3 tháng 7 2024

TH1: \(-5\le x\le2\)

=> \(\left(2-x\right)-4\left(5+x\right)=-23\)

\(=>2-x-20-4x=-23\)

\(=>-5x-18=-23\\ =>-5x=-23+18\\ =>-5x=-5\\ =>x=\dfrac{-5}{-5}=1\left(tm\right)\)

TH2: \(x>2\) 

\(\left(x-2\right)-4\left(5+x\right)=-23\) 

\(=>x-2-20-4x=-23\\ =>-3x-22=-23\\ =>-3x=-1\\ =>x=-\dfrac{1}{-3}=\dfrac{1}{3}\left(ktm\right)\)

TH3: \(x< -5\) 

\(\left(2-x\right)+4\left(5+x\right)=-23\\ =>2-x+20+4x=-23\\ =>3x+22=-23\\ =>3x=-45\\ =>x=-15\left(tm\right)\) 

Vậy: ...

3 tháng 7 2024

$|2-x|-4|5+x|=-23$ (1)

+, Với $x< -5\Rightarrow \begin{cases} |2-x|=2-x\\|5+x|=-5-x \end{cases}$, (1) trở thành:

$2-x-4(-5-x)=-23$

$\Rightarrow 2-x+20+4x=-23$

$\Rightarrow 3x+22=-23$

$\Rightarrow 3x=-23-22$

$\Rightarrow 3x=--45$

$\Rightarrow x=-15$ (tmdk)

+, Với $-5\le x\le 2\Rightarrow \begin{cases} |2-x|=2-x\\|5+x|=5+x \end{cases}$, (1) trở thành:

$2-x-4(5+x)=-23$

$\Rightarrow 2-x-20-4x=-23$

$\Rightarrow -5x-18=-23$

$\Rightarrow -5x=-23+18$

$\Rightarrow -5x==-5$

$\Rightarrow x=1$ (tmdk)

+, Với $x>2\Rightarrow \begin{cases} |2-x|=x-2\\|5+x|=5+x \end{cases}$, (1) trở thành:

$x-2-4(5+x)=-23$

$\Rightarrow x-2-20-4x=-23$

$\Rightarrow -3x-22=-23$

$\Rightarrow -3x=-23+22$

$\Rightarrow -3x=-1$

$\Rightarrow  x=\frac13$ (loại)

Vậy: ...

3 tháng 7 2024

   103.1005.10004

= 103.(102)5.(103)4

= 103.1010.1012

= 103+10+12

= 1013+12

= 1025

3 tháng 7 2024

103 x 1005 x 10004 = 1000 x 1005 x 10004 = 10005 x 100= 1000005

3 tháng 7 2024

274 x 8110 = 312 x 340 = 352

3 tháng 7 2024

     27x 8110 

=  (33)4 x (34)10

= 312 x 340

= 312+40

= 352

3 tháng 7 2024

Ta có:

loading...loading...  Mà

loading...  => a² > 5³

a² > 125

a = 12 (vì a là số nhỏ nhất)

3 tháng 7 2024

\(\dfrac{3x+2}{3}=\dfrac{-4}{5}\\ =>5\left(3x+2\right)=-4\cdot3\\ =>5\left(3x+2\right)=-12\\ =>3x+2=-\dfrac{12}{5}\\ =>3x=-\dfrac{12}{5}-2\\ =>3x=-\dfrac{22}{5}\\ =>x=\dfrac{-22}{5}:3\\ =>x=\dfrac{-22}{15}\)

4
456
CTVHS
3 tháng 7 2024

`3x + 2 / 3 = -4/5`

`3x + 2 ÷ 3 = -4/5`

`3x + 2        = -4/5 × 3`

`3x + 2        = -12/5`

`3x               = -12/5 - 2`

`3x               = -22/5`

`   x               = -22/5 ÷ 3`

`   x               = -22/15`

Vậy `x = -22/15`

3 tháng 7 2024

Gọi các số nguyên tố liên tiếp tăng dần là \(p_1,p_2,p_3,...\) với \(p_1=2,p_2=3,p_3=5,...\)

Giả sử tồn tại \(m>1\) để với mọi \(n\inℕ^∗\) thì \(p_{n+1}-p_n\le m\) hay \(p_n\ge p_{n+1}-m\) 

Khi đó, với mọi \(n\inℕ^∗\) thì:

\(p_1\ge p_2-m\ge p_3-2m\ge...\ge p_{n+1}-nm\)

Suy ra \(p_{n+1}\ge mn+2\) hay \(m\le\dfrac{p_{n+1}-2}{n}\) với mọi \(n\inℕ^∗\). Tuy nhiên, nếu cho \(n=1\) thì \(m\le\dfrac{p_2-2}{1}=1\), vô lý vì \(m>1\).

Vậy điều giả sử là sai \(\Rightarrow\) đpcm.

 

3 tháng 7 2024

ý tưởng chứng minh bằng phản chứng của anh Lê Song Phương rất hay. Tuy nhiên, đề bài cần chứng minh là:

\(\forall m>1,m\inℕ,\exists n\inℕ\) sao cho \(p_{n+1}-p_n>m\)

 

Nếu nhìn kỹ hơn thì đề bài có thể mở rộng thêm 1 chút

\(\forall m\inℕ,\exists n\inℕ\) sao cho \(p_{n+1}-p_n>m\)