-4x(x-5)-2x(8-2x)=-3
\(\frac{x-1}{-15}=\frac{-60}{x-1}\)
\(\left(\frac{1}{4}x-1\right)+\left(\frac{5}{6}x-2\right)-\left(\frac{3}{8}x+1\right)=4,5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(2x^2+8x+1=2\left(x^2+4x+\frac{1}{2}\right)=2\left(x^2+2.2x+4-4+\frac{1}{2}\right)\)
\(=2\left[\left(x+2\right)^2-\frac{7}{2}\right]=2\left(x+2\right)^2-7\ge-7\)
Vậy Min A = -7 khi x + 2 = 0 => x = 2
b/ \(2x^2+3x+1=2\left(x^2+\frac{3}{2}x+\frac{1}{2}\right)=2\left(x^2+2.\frac{3}{4}.x+\frac{9}{16}-\frac{9}{16}+\frac{1}{2}\right)\)
\(=2\left[\left(x+\frac{3}{4}\right)^2-\frac{1}{16}\right]=2\left(x+\frac{3}{4}\right)^2-\frac{1}{8}\ge-\frac{1}{8}\)
Vậy Min B = -1/8 khi x + 3/4 = 0 => x = -3/4
2x + 2x+1 + 2x+2 + 2x+3 = 120
=> 2x ( 1 + 2 + 22 + 23) = 120
=> 2x . 15 = 120
=> 2x = 8 = 23
=> x = 3
\(2^x+2^x\cdot2^1+2^x\cdot2^2+2^x\cdot2^3=120\)
\(2^x\cdot\left(1+2+4+8\right)=120\)
\(2^x\cdot15=120\)
\(2^x=120:15\)
\(2^x=8\)
\(2^x=2^3\)
\(=>x=3\)
\(x^2+\frac{1}{x^2}=7\Leftrightarrow x^2+2+\frac{1}{x^2}=9\Leftrightarrow\left(x+\frac{1}{x}\right)^2=3^2.\)Do x > 0 nên \(x+\frac{1}{x}\)>0 và \(x+\frac{1}{x}=3\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^3=27\Rightarrow x^3+\frac{1}{x^3}+3\cdot x\cdot\frac{1}{x}\left(x+\frac{1}{x}\right)=27\Rightarrow x^3+\frac{1}{x^3}+3\cdot3=27\Rightarrow x^3+\frac{1}{x^3}=18\)
\(\Rightarrow\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=7\cdot18\Rightarrow x^5+\frac{1}{x^5}+x+\frac{1}{x}=126\Rightarrow x^5+\frac{1}{x^5}+3=126\Rightarrow x^5+\frac{1}{x^5}=123.\)
Vậy \(x^5+\frac{1}{x^5}\)là 1 số nguyên và bằng: 123
Câu 2 : Bạn cần thêm điều kiện a,b là các số không âm
Áp dụng bất đẳng thức Cosi, ta có : \(12=3a+5b\ge2.\sqrt{3a.5b}=2\sqrt{15ab}\Rightarrow ab\le\frac{6^2}{15}=\frac{12}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3a+5b=12\\3a=5b\\a,b\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2\\b=\frac{6}{5}\end{cases}}\)
Vậy Max B = \(\frac{12}{5}\Leftrightarrow\hept{\begin{cases}a=2\\b=\frac{6}{5}\end{cases}}\)
a. Gọi S1 là quãng đường từ Huế đến chổ gặp nhau (km)
t1 là thời gian Hà đi từ Huế đến chổ gặp nhau (giờ)
Ta có: S1 = v1t1 = v2(t1- delta t )
⇔⇔ 45(t1 = 60(t1-1/2)
⇔⇔ 45t1 = 60t – 30
⇒⇒t1 = 2(h)
⇒⇒t2 = 1,5(h)
Vậy sau 1,5h Thu đuổi kịp Hà.
b. Quãng đường sau khi gặp nhau đến Đà Nẵng là :
S2 = S – S1 = S – v1t1 = 120 – (45.2) = 30(km)
c. Sau khi gặp nhau, vận tốc của xe ôtô là:
v =S/t =30/5/12=30.12/5 = 72 (km/h)
Chúc bạn học tốt!!!! ^^
\(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\)
a/ -4x(x - 5) - 2x(8 - 2x) = -3
=> -4x2 + 20x - 16x + 4x2 = -3
=> 4x = -3
=> x = -3/4
b/ \(\frac{x-1}{-15}=-\frac{60}{x-1}\Rightarrow\left(x-1\right)^2=\left(-60\right)\left(-15\right)\)
\(\Rightarrow\left(x-1\right)^2=900\Rightarrow\orbr{\begin{cases}x-1=30\\x-1=-30\end{cases}\Rightarrow\orbr{\begin{cases}x=31\\x=-29\end{cases}}}\)
Vậy x = -29 , x = 31