Cho hình thanh ABCD (AB//CD), hai đường chéo cắt nhau tại O. Qua O vẽ một đường thẳng song song với AB cắt AD và BC lần lượt tại M,N.
a) OM=ON
b) \(\frac{1}{AB}+\frac{1}{CD}=\frac{2}{MN}\)
c) Diện tích tam giác AOD. diện tích tam giác BOC= diện tích tam giác AOB.diện tích tam giác COD.
Biết làm câu a thì mình làm trước câu a thôi nha
Ta có OM // AB
\(\Rightarrow\)\(\frac{OM}{AB}=\frac{OD}{DB}\)( 1 )
ON // AB
\(\Rightarrow\)\(\frac{ON}{AB}=\frac{OC}{AC}\)( 2 )
AB // CD
\(\Rightarrow\)\(\frac{OD}{OB}=\frac{OC}{OA}\Rightarrow\frac{OD}{OB+OD}=\frac{OC}{OA+OC}\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\) ( 3 )
Từ ( 1 ) , ( 2 ) , ( 3 ) suy ra \(\frac{OM}{AB}=\frac{ON}{AB}\)
\(\Rightarrow\)\(OM=ON\left(ĐPCM\right)\)
Câu hỏi của trần trúc quỳnh - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo tại đây nhé.