tìm x>0 để \(B=\frac{x^2-2x+2011}{x^2}\) đạt giá trị nhỏ nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này ta có thể giải theo 2 cách
ta có A = \(\frac{x^2-2x+2011}{x^2}\)
= \(\frac{x^2}{x^2}\)- \(\frac{2x}{x^2}\)+ \(\frac{2011}{x^2}\)
= 1 - \(\frac{2}{x}\)+ \(\frac{2011}{x^2}\)
đặt \(\frac{1}{x}\)= y ta có
A= 1- 2y + 2011y^2
cách 1 :
A = 2011y^2 - 2y + 1
= 2011 ( y^2 - \(\frac{2}{2011}y\)+ \(\frac{1}{2011}\))
= 2011( y^2 - 2.y.\(\frac{1}{2011}\)+ \(\frac{1}{2011^2}\)- \(\frac{1}{2011^2}\) + \(\frac{1}{2011}\))
= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)
= 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)
vì ( y - \(\frac{1}{2011}\)) 2>=0
=> 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)
hay A >=\(\frac{2010}{2011}\)
cách 2
A = 2011y^2 - 2y + 1
= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\). \(\frac{1}{\sqrt{2011}}\)+ \(\frac{1}{2011}\)+ \(\frac{2010}{2011}\)
= \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)
vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0
nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)
hay A >= \(\frac{2010}{2011}\)
Ta có :
\(B=\frac{x^2-2x+2011}{x^2}\)
\(B=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2011}{x^2}\)
\(B=1-\frac{2}{x}+\frac{2011}{x^2}\)
\(B=\left(\frac{\sqrt{2011}^2}{x^2}-\frac{2}{x}+\frac{1}{2011}\right)+\frac{2010}{2011}\)
\(B=\left(\frac{\sqrt{2011}}{x}-\frac{1}{\sqrt{2011}}\right)^2+\frac{2010}{2011}\)
Mà : \(\left(\frac{\sqrt{2011}}{x}-\frac{1}{\sqrt{2011}}\right)^2\ge0\forall x\)
\(\Rightarrow B\ge\frac{2010}{2011}\)
Dấu "=" xảy ra khi :
\(\frac{\sqrt{2011}}{x}-\frac{1}{\sqrt{2011}}=0\)
\(\Leftrightarrow x=2\sqrt{2011}\)
Vậy \(MinB=\frac{2010}{2011}\Leftrightarrow x=2\sqrt{2011}\)
Tìm giá trị của x và y để :
S = x + 2 + 2y –10 + 2011 đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó .
\(\text{Ta có:}x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\ge0+5=5\)
\(P=\frac{1}{x^2+2x+6}\ge\frac{1}{5}\Rightarrow\text{GTLN của }P\text{ là:}\frac{1}{5}\text{ khi: }x=\frac{1}{5}\)
Ta có A=\(\dfrac{x^2-2x+2011}{x^2}\)\(=\dfrac{2011\left(x^2-2x+2011\right)}{2011x^2}\)
=\(\dfrac{x^2-2.2011x+2011^2+2010x^2}{2011x^2}\)
=\(\dfrac{\left(x-2011\right)^2+2010x^2}{2011x^2}\) =\(\dfrac{\left(x-2011\right)^2}{2011x^2}\) +\(\dfrac{2010}{2011}\)
\(\ge\)\(\dfrac{2010}{2011}\)(vì \(\dfrac{\left(x-2011\right)^2}{2011x^2}\ge0\) )
Dấu "=" xảy ra <=> (x-2011)2 = 0 => x-2011=0
=> x= 2011
Vậy GTNN của A = \(\dfrac{2010}{2011}\) khi x= 2011
Ta có \(A=\frac{x^2-2x+2011}{x^2}\)
\(=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2011}{x^2}\)
\(=1-\frac{2}{x}+\frac{2011}{x^2}\)
Đặt \(\frac{1}{x}=y\)ta có:
\(A=1-2y+2011y^2\)
\(A=2011y^2-2y+1\)
\(A=2011\left(y^2-\frac{2}{2011}y+\frac{2}{2011}\right)\)
\(=2011\left(y^2-2\times y\times\frac{1}{2011}+\frac{1}{2011^2}-\frac{1}{2011^2}+\frac{1}{2011}\right)\)
\(=2011\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)
\(=2011\left(y-\frac{1}{2011}\right)^2+\frac{2010}{2011}\)
Vì (y-\(\frac{1}{2011}\))\(^2\)>=0
\(\Rightarrow2011\left(y-\frac{1}{2011}\right)^2+\frac{2010}{2011}\)
Hay \(A>=\frac{2010}{2011}\)
quyet