K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2022

a) Xét \(\Delta MNK\left(\widehat{M}=90^o\right)\) và \(\Delta QNK\left(\widehat{Q}=90^o\right)\) có:

\(\widehat{MNK}=\widehat{QNK}\) (giả thiết)

\(NK\) là cạnh chung

\(\Rightarrow\Delta MNK=\Delta QNK\left(ch.gn\right)\)

b) Vì \(\Delta MNK=\Delta QNK\left(cmt\right)\)

\(\Rightarrow MN=QN\) (\(2\) cạnh tương ứng)

\(\Rightarrow\Delta MNQ\) cân tại \(N\)

Mà \(\widehat{MNQ}=60^o\)

\(\Rightarrow\Delta MNQ\) đều

Vì \(NK\) là tia phân giác \(\widehat{MNP}\) (giả thiết)

\(\Rightarrow\widehat{MNK}=\widehat{QNK}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^o}{2}=30^o=\widehat{NPK}\)

\(\Rightarrow\Delta NKP\) cân tại \(K\)

c) Vì \(\Delta NMQ\) đều (chứng minh trên)

\(\Rightarrow NM=MQ=NQ=8cm\)

Xét \(\Delta NMP\left(\widehat{M}=90^o\right)\) có:

\(PN=2MN=2.8=16cm\)

\(\Rightarrow PQ=16-8=8cm\)

a: Xét ΔMNK vuông tại M và ΔQNK vuông tại Q có

NK chung

\(\widehat{MNK}=\widehat{QNK}\)

Do đó: ΔMNK=ΔQNK

b: Ta có: ΔMNK=ΔQNK

nên NM=NQ

=>ΔNMQ cân tại N

mà \(\widehat{MNQ}=60^0\)

nên ΔMNQ đều

Xét ΔNKQ có 

\(\widehat{KPN}=\widehat{KNP}\)

nên ΔNKQ cân tại K

c: Xét ΔMNP vuông tại M có 

\(\cos N=\dfrac{MN}{NP}\)

=>NP=16(cm)

=>\(MP=8\sqrt{3}\left(cm\right)\)

a: NP=10cm

C=MN+MP+NP=24(cm)

b: Xét ΔMNK vuông tại M và ΔENK vuông tại E có

NK chung

\(\widehat{MNK}=\widehat{ENK}\)

Do đó: ΔMNK=ΔENK

c: Ta có: MK=EK

mà EK<KP

nên MK<KP

11 tháng 5 2022

Cảm ơn bạn nhìu😍😍

 

14 tháng 3 2022

undefined

14 tháng 3 2022

hình nha

a: Xét ΔMNK và ΔMIK có

MN=MI

góc NMK=góc IMK

MK chung

=>ΔMNK=ΔMIK

=>KN=KI

=>ΔKNI cân tại K

b: ΔMNK=ΔMIK

=>góc MIK=góc MNK=90 độ

b: Xét ΔMEP có

EI,PN là đường cao

EI cắt PN tại K

=>K là trực tâm

=>MK vuông góc EP

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔNMK có NM=NK

nên ΔNMK cân tại N

mà \(\widehat{MNK}=60^0\)

nên ΔNMK đều

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)

a: Xét ΔMNI vuông tại M và ΔKNI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔMNI=ΔKNI

b: Ta có: ΔMNI=ΔKNI

nên NM=NK

Xét ΔMNK có NM=NK

nên ΔMNK cân tại N

Xét ΔMNK cân tại N có \(\widehat{MNK}=60^0\)

nên ΔMNK đều

c: Ta có: ΔMNI=ΔKNI

nên MI=IK

mà IK<IP

nên MI<IP

d: Xét ΔMNP vuông tại M có

\(NP=\dfrac{MN}{\sin30^0}\)

\(=3:\dfrac{1}{2}=6\left(cm\right)\)

Áp dụng định lí Pytago vào ΔMNP vuông tại M, ta được:

\(MN^2+MP^2=NP^2\)

\(\Leftrightarrow MP=3\sqrt{3}\left(cm\right)\)