K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔMNK và ΔMIK có

MN=MI

góc NMK=góc IMK

MK chung

=>ΔMNK=ΔMIK

=>KN=KI

=>ΔKNI cân tại K

b: ΔMNK=ΔMIK

=>góc MIK=góc MNK=90 độ

b: Xét ΔMEP có

EI,PN là đường cao

EI cắt PN tại K

=>K là trực tâm

=>MK vuông góc EP

28 tháng 11 2016

Đề chép zậy tr làm cko you .

28 tháng 11 2016

bn cho tam giác vuông ở đâu ?

 

19 tháng 12 2017

a) xét tam giác MND và tam giác END ta có

MN = EN

góc MND = góc END

ND: cạnh chung

suy ra tam giác MND = tam giác END

suy ra DM = DE và óc NMD = góc NEDsuy ra góc NED = 90 độ

b) ta có tam giác MND = tam giác END suy ra MD = ED

xét tam giác DMK và tam giác DEP ta có 

góc KMD = góc PED ( =90độ)

MD = ED

góc MDK = góc EDP( hai góc đối đinh)

suy ra tam giác DMK = tam giác DEP(đpcm)

c)ta có tam giác DMK = tam giác DEP suy ra MK=EP

ta có NM = NEvà MK = EP suy ra MN+MK=NE+EP suy ra NK=NP

xet tam giác KNDvà tam giác PND ta có

NK=NP

KND= PND

ND:cạnh chung

suy ra tam giác KND=tam giác PND suy ra góc NDK = góc NDP

ta có góc NDK+góc NDP=180 độ và góc NDK= góc NDP

suy góc NDK = góc NDP =90độ

suy ra ND vuông góc với KP

19 tháng 12 2017

hello

23 tháng 6 2020

M P N 3 4 A C G

a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ

\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)

THAY\(NP^2=4^2+3^2\)

\(NP^2=16+9\)

\(NP^2=25\)

\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)

XÉT \(\Delta MNP\)

\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)

\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)

B) xét \(\Delta\text{ CPM}\)\(\Delta\text{CPA}\)

 \(PM=PA\left(GT\right)\)

\(\widehat{MPC}=\widehat{APC}=90^o\)

PC LÀ CAH CHUNG 

=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)

23 tháng 6 2020

c)

\(\Delta CPM=\Delta CPA\left(cmt\right)\)

\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)

\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)

             \(\widehat{NMC}+\widehat{CMP}=90^o\)

\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)

\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)

\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)

\(\Rightarrow\Delta NMC\text{ cân}\)

\(\Rightarrow CN=CM\left(đpcm\right)\)