cho 3 số x,y,z thỏa mãn x^2+y^2+z^3=1 và x^3+y^3+z^3=1.Hãy tính tổng x+y+z
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có (x+y+z)3 = (x+y)3 + [3(x+y)2z + 3(x+y).z2 ]+ z3 = (x3 + 3x2y + 3xy2 + y3 )+ 3 (x+y).z.(x+y+z) + z3
= x3 + y3 + z3 + 3xy (x+y) + 3z(x+y) (vì x+y + z = 1)
= 1 + 3(x+y).(xy + z) = 1+ 3(x+y)(xy+z) = 1
=> x+y = 0 hoặc xy +z = 0
Nếu x+ y = 0 => x=-y và z = 1 => S = x2013 + (-x)2015 + 12017 + 2019 = x2013 - x2015 +2020 (có thể đề là y2013)
Nếu xy + z = 0 => z = -xy => x + y -xy - 1 = 0 => x(1-y) -(1-y) = 0 => (x-1)(1-y) = 0 => x = 1 hoặc y = 1
x = 1 => z = -y làm tương tự như trên
* đề nên sửa số mũ của x, y, z đều bằng nhau và bằng số lẻ
với mọi x, y, z ta có:
(x-y)^2 +(y-z)^2+ (z-x)^2>=0
<=>2x^2 +2y^2 + 2z^2 - 2xy -2yz - 2xz >=0
<=>x^2 + y^2 +z^2 - xy -yz -zx >=0
<=>(x+y+z)^2 >= 3(x+y+z)
<=>[(x+y+z)^2]/3 >= xy+yz+ zx
=>xy +yz + zx <=3
dấu = xảy ra khi x=y=z =1
hình như bài của mik làm có j đó sai sai
{ x + y + z = 1 (1)
{ x² + y² + z² = 1 (2)
{ x³ + y³ + z³ = 1 (3)
(x + y + z)² = x² + y² + z² + 2(xy + yz + zx)
⇒ 2(xy + yz + zx) = (x + y + z)² - (x² + y² + z²) = 1² - 1 = 0 ⇒ xy + yz + zx = 0
(x + y + z)³ = x³ + y³ + z³ + 3(x + y)(y + z)(z + x)
⇒ 3(x + y)(y + z)(z + x) = (x + y + z)³ - (x³ + y³ + z³) = 1³ - 1 = 0
⇒ x + y = 0 hoặc y + z = 0 hoặc z + x = 0
@ Nếu x + y = 0 ⇔ x = - y thay vào (1) ⇒ z = 1 , thay vào (2) ⇒ 2x² + 1 = 1 ⇒ x = 0; y = 0
⇒ S = 1
Tương tự cho trường hợp y + z = 0 và z + x = 0
Gợi ý nhá
Bài 3: câu 1: làm tương tự như câu hỏi lần trước bạn gửi.
b) Bạn chỉ cần cho tử và mẫu mũ 3 lên. theé là dễ r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow=\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\Rightarrow=\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
tự tính tiếp =)
\(x^2+y^2+z^2=xy+yz+zx\\ \Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\\ \Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\Leftrightarrow x=y=z\\ \text{Mà }x+y+z=-3\Leftrightarrow x=y=z=-1\\ \Leftrightarrow B=1-1+1=1\)