Cho tam giác ABC cân tại A. M là điểm nằm trong tam giác ABC sao cho: góc MAC=MBA=MBC. Gọi N là trung điểm AC. Chứng minh M, M, N thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
=>AM là phân giác của góc BAC
b: MB=MC
NB=NC
=>MN là trung trực của BC(1)
c: AB=AC
=>A nằm trên trung trực của BC(2)
Từ (1), (2) suy ra A,M,N thẳng hàng
a) Xét Δ AMC và Δ AMB có:
AC = AB (gt)
AM là cạnh chung
MC = MB (gt)
⇒Δ AMC = Δ AMB (c.c.c)
⇒∠CAM = ∠BAM (2 góc tương ứng)
⇒AM là phân giác BAC ( đpcm)
b) Xét t/g ANC và t/g ANB có:
AC = AB (gt)
AN là cạnh chung
NC = NB (gt)
⇒ Δ ANC = Δ ANB (c.c.c)
⇒ ∠CAN = ∠BAN (2 góc tương ứng)
⇒ AN là phân giác BAC
Như vậy, AM và AN đều là phân giác của BAC
Nên AM và AN trùng nhau hay A,M,N thẳng hàng (đpcm)
c)Vì Δ ANC = Δ ANB (câu b)
⇒ ∠ANC = ∠ANB (2 góc tương ứng)
Mà ∠ANC + ∠ANB = 180o ( kề bù)
Nên ∠ANC = ∠ANB = 90o
⇒AN vg BC hay MN vg BC
Mà CN = BN (gt)
Do đó, MN là đường trung trực của BC ( đpcm)
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành