K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2021

\(\left(x+1\right)^2\ge0\forall x\\ \left|2-y\right|^{2015}\ge0\forall y\\ \Rightarrow C=\left(x+1\right)^2+\left|2-y\right|^{2015}-2016\ge-2016\forall x;y\)

\("="\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\\ C_{min}=-2016\)

3 tháng 4 2016

Vì |y-5|>=0

=>A=|y-5|+100>=100

Dấu bằng xảy ra khi:|y-5|=0

                                    y-5=0

                                      y=5

Vậy A có giá trị nhỏ nhất là 100 khi y=5

Vì |x-2015|>=0

=>2016-|x-2015|<=2016

Dấu bằng xảy ra khi:|x-2015|=0

                                    x-2015=0

                                          x=2015

Vậy A có giá trị lớn nhất là 2016 khi x=2015

1 tháng 10 2016

a, B = |x-5| +|2-x|

Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x-5\right|+\left|2-x\right|\ge\left|x-5+2-x\right|=3\)

\(\Rightarrow B\ge3\)

Dấu = khi \(\left(x-5\right)\left(2-x\right)\ge0\)\(\Rightarrow2\le x\le5\)

\(\Leftrightarrow\begin{cases}\left(x-5\right)\left(2-x\right)=0\\2\le x\le5\end{cases}\)\(\Leftrightarrow\begin{cases}x=5\\x=2\end{cases}\)

Vậy MinB=3 khi \(\begin{cases}x=5\\x=2\end{cases}\)

b)Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|y+8\right|+\left|2-y\right|\ge\left|y+8+2-y\right|=10\)

\(\Rightarrow C\ge10\)

Dấu = khi \(\left(y+8\right)\left(y-2\right)\ge0\)\(\Rightarrow-8\le x\le2\)

\(\Leftrightarrow\begin{cases}\left(y+8\right)\left(y-2\right)=0\\-8\le x\le2\end{cases}\)\(\Leftrightarrow\begin{cases}y=-8\\y=2\end{cases}\)

Vậy MinC=10 khi \(\begin{cases}y=-8\\y=2\end{cases}\)

c)Ta có:

\(\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)

\(\ge x-2015+0+2017-x=2\)

\(\Rightarrow P\ge2\)

Dấu = khi \(\begin{cases}x-2015\ge0\\x-2016=0\\x-2017\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge2015\\x=2016\\x\le2017\end{cases}\)\(\Rightarrow x=2016\)

Vậy MinP=2 khi x=2016