Tìm giá trị nhỏ nhất củ biểu thức:
\(A=x^2+2y^2-2xy-4y+2016\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2xy+y^2\) +\(y^2-4y+4+1\)
=\(\left(x+y\right)^2+\left(y-2\right)^2+1\ge1\)
dau = xay ra \(\Leftrightarrow y=2\),\(x=-2\)
min M =1 khi x=-2 y=2
hình như là 9x^2+16y^2 chứ nhỉ
áp dụng bđt cối ta có 3A>= (3x+4y)2=25
a) *Xét x=0
==> Giá trị A=2022!(1)
*Xét 0<x≤2022
==> A=0(2)
*Xét x>2022
==> A≥2022!(3)
Từ (1),(2) và (3) ==> Amin=0 khi0<x≤2022
Mà để xmax ==> x=2022
Vậy ...
b)B=\(\dfrac{2018+2019+2020}{x-2021}\)=\(\dfrac{6057}{x-2021}\) (Điều kiện x-2021≠0 hay x≠2021)
Để Bmax ==> x-2021 là số tự nhiên nhỏ nhất
Mà x-2021≠0 =>x-2021=1==>x=2022
Khi đó Bmax=6057
Vậy...
\(A=x^2+2y^2-2xy-4y+2016\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2-4y+4\right)+2012\)
\(=\left(x-y\right)^2+\left(y-2\right)^2+2012\)\(\ge\)\(2012\), \(\forall x,y\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x-y=0\\y-2=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=y=2\\y=2\end{cases}}\)
Vậy....