Cho (O) và hai dây AB,AC. Gọi M,N lần lượt là điểm chính giữa của \(\widebat{AB}\);\(\widebat{AC}\). đường thẳng MN cắt dây AB tại D, cắt dây AC tại E. Chứng minh tam giác ADE cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Do góc là góc có đỉnh bên trong đường tròn chắn hai cung
+ Do góc là góc có đỉnh bên trong đường tròn chắn hai cung
+ Do M và N là điểm chính giữa của cung A B ⏜ v à A C ⏜
+ Do góc là góc có đỉnh bên trong đường tròn chắn hai cung
+ Do góc là góc có đỉnh bên trong đường tròn chắn hai cung
Kiến thức áp dụng
+ Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.
Ta có: = (1)
= (2)
(Vì và là các góc có đỉnh cố định ở bên trong đường tròn).
Theo gỉả thiết thì:
Từ (1),(2), (3), (4), suy ra = do đó ∆AEH là tam giác cân.
ta có góc CBM là góc nội tiếp chắn cung CM
góc MBA là góc nội tiếp chắn cung MA
mà cung CM= cung MA( vì M là điểm chính giữa của cung CA)
=> góc CBM= góc MBA
hay BM là tia phân giác của góc CBA
CM tương tự ta có: AN là tia phân giác của góc CAB
xét tam giác CAB có
2 tia phân giác BM và AN cắt nhau tại I
=> I là tâm đường tròn nội tiếp tam giác CAB
=> CI là tia phân giác của góc ACB(đpcm)
2) Chứng minh N B 2 = N K . N M .
Ta có N là điểm chính giữa cung B C ⏜ ⇒ B N ⏜ = C N ⏜ ⇒ B M N ^ = C M N ^ (góc nội tiếp chắn 2 cung bằng nhau)
Mà C B N ^ = C M N ^ (góc nội tiếp chắn cùng chắn cung C N ⏜ )
C B N ^ = B M N ^ (cùng bằng góc C M N ^ ) ⇒ K B N ^ = B M N ^
Xét Δ K B N v à Δ B M N có:
N ^ chung
K B N ^ = B M N ^
⇒ Δ K B N ∽ Δ B M N ⇒ K N B N = B N M N ⇒ N B 2 = N K . N M
(điều phải chứng minh).