K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2017

Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Do góc Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc có đỉnh bên trong đường tròn chắn hai cung Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Do góc Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc có đỉnh bên trong đường tròn chắn hai cung Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Do M và N là điểm chính giữa của cung  A B   ⏜ v à   A C ⏜

4 tháng 2 2017

Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Do góc Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc có đỉnh bên trong đường tròn chắn hai cung Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Do góc Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9 là góc có đỉnh bên trong đường tròn chắn hai cung Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 36 trang 82 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

+ Số đo của góc có đỉnh ở bên trong đường tròn bằng nửa tổng số đo hai cung bị chắn.

11 tháng 4 2017

Ta có: = (1)

= (2)

(Vì là các góc có đỉnh cố định ở bên trong đường tròn).

Theo gỉả thiết thì:

Từ (1),(2), (3), (4), suy ra = do đó ∆AEH là tam giác cân.

1 tháng 7 2019

4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.

Vì N là điểm chính giữa cung nhỏ BC nên DN là trung trực của BC nên DN là phân giác  B D C ^

Ta có  K Q C ^ = 2 K M C ^  (góc nọi tiếp bằng nửa góc ở tâm trong dường tròn (Q))

N D C ^ = K M C ^  (góc nội tiếp cùng chắn cung  N C ⏜ )

Mà  B D C ^ = 2 N D C   ^ ⇒ K Q C ^ = B D C ^

Xét 2 tam giác BDC & KQC là các các tam giác vuông tại D và Q có hai góc ở  ⇒ B C D ^ = B C Q ^  do vậy D, Q, C thẳng hàng nên KQ//PK

Chứng minh tương tự ta có  ta có D, P, B thẳng hàng và DQ//PK

Do đó tứ giác PDQK là hình bình hành nên E là trung điểm của PQ cũng là trung điểm của DK. Vậy D, E, K thẳng hàng (điều phải chứng minh).

23 tháng 8 2018

3) Chứng minh tứ giác BHIK là hình thoi.

Ta có  A B C ^ = A N C ^  (góc nội tiếp cùng chắn cung A C ⏜ )

A M C ^ = A H I ^ (góc nội tiếp cùng chắn cung I C ⏜ )

⇒ A B C ^ = I K C ^  Mà 2 góc này ở vị trí đồng vị nên  H B / / I K  (1)

+ Chứng minh tương tự phần 1 ta có tứ giác AMHI nội tiếp

A N C ^ = I K C ^  (góc nội tiếp cùng chắn cung  A I ⏜ )

Ta có  A B C ^ = A M C ^  (góc nội tiếp cùng chắn cung  A C ⏜ )

⇒ A B C ^ = A H I ^  Mà 2 góc này ở vị trí đồng vị nên  B K / / H I  (2)

Từ (1) và (2) suy ra tứ giác BHIK là hình bình hành.

Mặt khác AN, CM  lần lượt là các tia phân giác của các góc A và C  trong tam giác ABC nên I là giao điêm 3 đường phân giác, do đó BI là tia phân giác góc B

Vậy tứ giác BHIK là hình thoi (dấu hiệu nhận biết hình thoi).

 

13 tháng 5 2018

2) Chứng minh  N B 2 = N K . N M .

Ta có N là điểm chính giữa cung  B C ⏜   ⇒ B N ⏜ = C N ⏜   ⇒ B M N ^ = C M N ^   (góc nội tiếp chắn 2 cung bằng nhau)

Mà  C B N ^ = C M N ^ (góc nội tiếp chắn cùng chắn cung  C N ⏜ )

C B N ^ = B M N ^ (cùng bằng góc  C M N ^ ⇒ K B N ^ = B M N ^

Xét  Δ K B N   v à   Δ B M N có:

N ^ chung

K B N ^ = B M N ^

⇒ Δ K B N ∽ Δ B M N ⇒ K N B N = B N M N ⇒ N B 2 = N K . N M

(điều phải chứng minh).