K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2018

n là số tự nhiên lớn hơn 1

21 tháng 5 2019

Hình như bạn chép sai đề , phải là dấu " < " chứ . Đây tớ CM này :

ta có:\(\sqrt{t}+\sqrt{t+1}< 2\sqrt{t+1}\) 

\(\Leftrightarrow\frac{1}{\sqrt{t+1}-\sqrt{t}}< 2\sqrt{t+1}\Leftrightarrow\frac{\sqrt{t+1}}{2\left(\sqrt{t+1}-\sqrt{t}\right)}< t+1\)

\(\Leftrightarrow\frac{1}{\left(t+1\right)\sqrt{t}}< \frac{2\left(\sqrt{t+1}-\sqrt{t}\right)}{\sqrt{t+1}\sqrt{t}}=2\left(\frac{1}{\sqrt{t}}-\frac{1}{\sqrt{t+1}}\right)\)

Thế vào phương trình trên , ta có : \(\frac{1}{1\sqrt{2}}+\frac{1}{2\sqrt{3}}+...+\frac{1}{n\sqrt{n+1}}< \frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)                                                                                                                \(=\)\(1-\frac{1}{\sqrt{n+1}}\)

Đó rõ ràng là <                                             (+_+)

22 tháng 5 2019

mk nhầm chút ,đoạn cuối phải là \(\le2\left(1-\frac{1}{\sqrt{n+1}}\right)\)

6 tháng 10 2017

a, Chắc xét hàm số tổng quát!

Xét hàm số tổng quát:

\(\dfrac{1}{\left(k+1\right)\sqrt{k}}=\dfrac{\sqrt{k}}{k\left(k+1\right)}=\sqrt{k}\left(\dfrac{1}{k\left(k+1\right)}\right)\)

\(=\sqrt{k}\left[\sqrt{\dfrac{1}{k}}^2-\sqrt{\dfrac{1}{k+1}}^2\right]\)

\(=\sqrt{k}\left(\dfrac{1}{\sqrt{k}}+\dfrac{1}{\sqrt{k+1}}\right)\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\)

\(=\left(1+\dfrac{\sqrt{k}}{\sqrt{k+1}}\right)\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\)

\(\dfrac{\sqrt{k}}{\sqrt{k+1}}< 1\Rightarrow1+\dfrac{\sqrt{k}}{\sqrt{k+1}}< 2\)

Do đó \(\left(1+\dfrac{\sqrt{k}}{\sqrt{k+1}}\right)\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)< 2.\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\)

\(\Rightarrow\dfrac{1}{\left(k+1\right)\sqrt{k}}< 2\left(\dfrac{1}{\sqrt{k}}-\dfrac{1}{\sqrt{k+1}}\right)\) (1)

Áp dụng điểu (1) ta được:

\(\dfrac{1}{2}< 2\left(\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\right)\)

\(\dfrac{1}{3\sqrt{2}}< 2\left(\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\right)\)

...................................

\(\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+....+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+....+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\right)\)

\(\Rightarrow\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\left(1-\dfrac{1}{\sqrt{n+1}}\right)\)

Với mọi giá trị của \(n>0\) ta luôn có: \(\sqrt{n+1}>0\)

Do đó \(\dfrac{1}{2\sqrt{1}}+\dfrac{1}{3\sqrt{2}}+...+\dfrac{1}{\left(n+1\right)\sqrt{n}}< 2\) (đpcm)

6 tháng 10 2017

Đang nghi ngờ you với nhailaier là crush -_-

29 tháng 9 2019

(Fix luôn lại đề)

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}\left(n\in N\right)=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

=\(\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)

=\(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Bài 2:

Áp dụng bài 1 vào A được:

A\(1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)

17 tháng 8 2018

Mấy bài này đã có người làm rồi nhé bạn vào câu hỏi tương tự mà xem.

21 tháng 12 2015

Đặt A =\(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}\)

=> A > \(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}+.....+\frac{1}{\sqrt{n}}\)

=> A > \(\frac{1}{\sqrt{n}}.n\)

=> A > \(\sqrt{n}\)

=> \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+.....+\frac{1}{\sqrt{n}}>\sqrt{n}\)(Đpcm)