Chứng tỏ 0.7(2013^2013+2017^2017)là số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1: n = 2k (k thuộc N):
Ta có: (n + 20122013)(n + 20132012) = (2k + 20122013)(2k + 20132012).
Vì: (2k + 20122013) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2 (1)
TH2: n = 2k + 1 (k thuộc N):
Ta có: (n + 20122013)(n + 20132012) = (2k + 1 + 20122013)(2k + 1 + 20132012).
Vì: (2k + 1 + 20132012) là số chẵn nên suy ra: (2k + 20122013)(2k + 20132012) ⋮ 2 (2)
Từ (1) và (2) suy ra: (n + 20122013)(n + 20132012) ⋮ 2.
a. Ta có :
\(\frac{\left(2017^{2018}-2017^{2017}\right)}{2017^{2016}}=\frac{2017^{2017}\cdot\left(2017-1\right)}{2017^{2016}}=2017\cdot2016\)
VẬY A CÓ CHỮ SỐ TẦN CỤNG LÀ 2
b. Đề có sai không bạn ví dụ 909 có 2 chữ số giống nhau và là số tự nhiên nhưng đâu chia hết cho 37 đâu
Ko chứng tỏ đc thì chứng tỏ nó sai ! Bạn biết làm cách đấy ko ?