K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2021

Áp dung hệ thức lượng trong tam giác vuông ABC : 

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{AB^2+AC^2}{AB^2\cdot AC^2}\)

\(\Leftrightarrow AH=\dfrac{\sqrt{AB^2+AC^2}}{AB\cdot AC}\)

\(\Leftrightarrow AH=\dfrac{\sqrt{AB^2+\left(\dfrac{4AB}{3}\right)^2}}{AB\cdot\dfrac{4AB}{3}}=\dfrac{5AB}{4}\)

\(\Rightarrow AB=\dfrac{4\cdot\dfrac{12}{5a}}{5}=\dfrac{48}{25}a\)

\(BC=\dfrac{AB\cdot AC}{AH}=\dfrac{AB\cdot\dfrac{4}{3}AB}{\dfrac{5}{4}\cdot AB}=\dfrac{16}{15}AB=\dfrac{16}{15}\cdot\dfrac{48}{25}\cdot a=2.048a\)

Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC=12\left(cm\right)\)

\(\Leftrightarrow AB=9\left(cm\right)\)

hay AH=7,2(cm)

17 tháng 9 2021

AB=3/4AC 

Theo pytago ta có: AB²+AC²=BC²

(¾AC)²+AC²=15² 

=>AC=12 

=>AB=¾.12=9 

AB.AC=AH.BC( HỆ THỨC LƯỢNG)

=>AH=7.2

 

 

 

a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng vói ΔABC

b: \(AB=\sqrt{5^2-3^2}=4\left(cm\right)\)

AH=3*4/5=2,4cm

HB=4^2/5=3,2cm

c: FH/FA=BH/BA

EA/EC=BA/BC

BH/BA=BA/BC

=>FH/FA=EA/EC

AC=căn (2a)^2-a^2=a*căn 3

AH=a*a*căn 3/2a=a*căn 3/2

12 tháng 8 2021

tính chất phân giác\(=>\dfrac{BH}{AB}=\dfrac{MH}{AM}=>\dfrac{BH}{60}=\dfrac{5}{12}=>BH=25cm\)

do tam giác ABC cân tại A vì AB=AC nên AH là đường cao đồng thời là phân giác

\(=>\dfrac{AB}{AC}=\dfrac{BH}{HC}=>1=\dfrac{25}{HC}=>HC=25cm=>BC=50cm\)

Xét ΔAHB vuông tại H có \(tanB=\dfrac{AH}{HB}\)

=>\(\dfrac{2.4}{HB}=\dfrac{3}{4}\)

=>\(HB=2.4\cdot\dfrac{4}{3}=3,2\left(cm\right)\)

ΔABH vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(AB^2=3,2^2+2,4^2=16\)

=>\(AB=\sqrt{16}=4\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AB^2=BH\cdot BC\)

=>\(BC=\dfrac{4^2}{3,2}=5\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=5^2-4^2=9\)

=>\(AC=\sqrt{9}=3\left(cm\right)\)

Chu vi tam giác ABC là:

3+4+5=12(cm)

Bài 2: 

Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)

nên HC=3HB

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB^2=48\)

\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)

\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)

Bài 1:

ta có: \(AB=\dfrac{1}{2}AC\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)

\(\Leftrightarrow HC=4HB\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB=1\left(cm\right)\)

\(\Leftrightarrow HC=4\left(cm\right)\)

hay BC=5(cm)

Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)

19 tháng 6 2023

Xét tam giác ABC vuông tại A có:

 \(BC^2=AB^2+AC^2\) (đl pytago)

\(\Leftrightarrow4a^2=a^2+AC^2\\\Rightarrow AC=4a^2-a^2=3a^2 \)

Vậy \(AC=\sqrt{3}a\)

Tam giác ABC vuông tại A có AH \(\perp\) AC tại H

Ta có:

\(BC.AH=AB.AC\) (hệ thức lượng)

\(\Leftrightarrow2a.AH=a.\sqrt{3}a\\ \Rightarrow AH=\dfrac{\sqrt{3}a^2}{2a}=\dfrac{\sqrt{3}a}{2}\)

Vậy \(AH=\dfrac{\sqrt{3}a}{2}\)

\(BC=AB:\dfrac{3}{5}=6:\dfrac{3}{5}=10\left(cm\right)\)

=>AC=8cm

=>AH=4,8cm