1) TÌM X E Z
a) 37 - ( x - 25 ) = x + 14
b) 11 - (x - 3)2 =0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 28+2x=35-(-13)
=> 2x=35+13-28
=>2x=20
=> x=10. vậy x=10
chúc bn hok tốt k cho mik nha
a) (-37 - 17) . (-9) + 35 . (-9 - 11)
=-54*(-9)+35*(-20)
=486+(-700)
=-214
b) (-25) . (75 - 45) - 75 . ( 45 - 25)
=(-25)*30-75*20
=-750-1500
=-2250
Bài `10`
`a,` Ta có : `x/2=y/3=>(4x)/8 =(3y)/9`
ADTC dãy tỉ số bằng nhau ta có :
`(4x)/8 =(3y)/9=(4x-3y)/(8-9)=(-2)/(-1)=2`
`=> x/2=2=>x=2.2=4`
`=>y/3=2=>y=2.3=6`
`b,` Ta có : `2x=5y=>x/5=y/2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5=y/2=(x+y)/(5+2)=-42/7=-6`
`=>x/5=-6=>x=-6.5=-30`
`=>y/2=-6=>y=-6.2=-12`
Bài `11`
`a,` Ta có : `x/3=y/4=z/6=>x/3=(2y)/8 =(3z)/18`
ADTC dãy tỉ số bằng nhau ta có :
`x/3=(2y)/8=(3z)/18=(x+2y-3z)/(3+8-18)=(-14)/(-7)=2`
`=>x/3=2=>x=2.3=6`
`=>y/4=2=>y=2.4=8`
`=>z/6=2=>z=2.6=12`
Bạn đăng lại `2` câu sau nhe , mình ko hiểu `x=y-z` với `15x-5y=3x=45`
`d,` Ta có :
`x/2=y/3=>x/4=y/6`
`y/2=z/3=>y/6=z/9`
`-> x/4=y/6=z/9=>x/4=(2y)/12 =(3z)/27`
ADTC dãy tỉ số bằng nhau ta có :
`x/4=(2y)/12=(3z)/27=(x-2y+3z)/(4-12+27)=19/19=1`
`=>x/4=1=>x=1.4=4`
`=>y/6=1=>y=1.6=6`
`=>z/9=1=>z=1.9=9`
a) x : 2 = y : (-5)
⇒ x/2 = y/(-5)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/2 = y/(-5) = (x - y)/(2 + 5) = 14/7 =
x/2 = 2 ⇒ x = 2.2 = 4
y/(-5) = 2 ⇒ y = 2.(-5) = -10
Vậy x = 4; y = -10
b) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/2 = y/5 = z/6 = (x - y + z)/(2 - 5 + 6) = 24/3 = 8
x/2 = 8 ⇒ x = 8.2 = 16
y/5 = 9 ⇒ y = 8.5 = 40
z/6 = 8 ⇒ z = 8.6 = 48
Vậy x = 16; y = 40; z = 48
c) 2x = 3y = 6z
⇒ x/(1/2) = y/(1/3) = z/(1/6)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/(1/2) = y/(1/3) = z/(1/6) = (x + y - z)/(1/2 + 1/3 - 1/6) = 8/(2/3) = 12
2x = 12 ⇒ x = 12 : 2 = 6
3y = 12 ⇒ y = 12 : 3 = 4
6z = 12 ⇒ z = 12 : 6 = 2
Vậy x = 6; y = 4; z = 2
d) x/3 = y/2 = z/(-3)
⇒ 2x/6 = 3y/6 = 4z/(-12)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
2x/6 = 3y/6 = 4z/(-12) = (2x - 3y + 4z)/(6 - 6 - 12) = 48/(-12) = -4
x/3 = -4 ⇒ x = -4.3 = -12
y/2 = -4 ⇒ y = -4.2 = -8
z/(-3) = -4 ⇒ z = -4.(-3) = 12
Vậy x = -12; y = -8; z = 12
e) Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/5 = y/6 = z/7 = (x - y)/(5 - 6) = 36/(-1) = -36
x/5 = -36 ⇒ x = -36.5 = -180
y/6 = -36 ⇒ y = -36.6 = -216
z/7 = -36 ⇒ z = -36.7 = -252
Vậy x = -180; y = -216; z = -252
f) x/12 = y/13
⇒ 3x/36 = 2y/26
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
3x/36 = 2y/26 = (3x + 2y)/(36 + 26) = 52/62 = 26/31
x/12 = 26/31 ⇒ x = 26/31 . 12 = 312/31
y/13 = 26/31 ⇒ y = 26/31 . 13 = 338/31
z/15 = 26/31 ⇒ z = 26/31 . 15 = 390/31
Vậy x = 312/31; y = 338/31; z = 390/31
a) x(x + 83) = 0
=> \(\orbr{\begin{cases}x=0\\x+83=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-83\end{cases}}\)
Vậy ...
d) (x2 + 7)(x - 37) = 0
=> \(\orbr{\begin{cases}x^2+7=0\\x-37=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=-7\\x=37\end{cases}}\)
=> x ko có gtri vì x2 \(\ge\)0 mà x2 = -7
hoặc x = 37
Vậy ...
b) (x + 97)(x - 3)x = 0 e) (x + 5)(x - 9)(x2 + 9) = 0
=> x + 97 = 0 => x + 5 = 0
hoặc x - 3 = 0 hoặc x - 9 = 0
hoặc x = 0 hoặc x2 + 9 = 0
=> x = -97 => x = -5
hoặc x = 3 hoặc x = 9
hoặc x = 0 hoặc x ko có gtri
c) (x + 72)(x - 8)(x + 49) = 0 g) (x2 - 25)(x - 3)(x - 5) = 0
=> x + 72 = 0 => x2 - 25 = 0
hoặc x - 8 = 0 hoặc x - 3 = 0
hoặc x + 49 = 0 hoặc x - 5 = 0
=> x = -72 => x = \(\pm\)5
hoặc x = 8 hoặc x = 3
hoặc x = -49 hoặc x = 5
h, tương tự
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
1
37.(43-51)-43.(37-51)
=37.43-37.51-43.37-43.51
=(37.43-43.57)-(37.51-43.51)
=0-(-306)
=306
2
a.(x-1).(2x+2)=0
=>x-1 hoặc 2x+2=0
=>x=1 hoặc 2x=-2
=>x=1 hoặc x=-1
Vậy x=+1
b.(6x-12).(x-3)=0
=>6x-12 hoặc x-3=0
=>6x=12 hoặc x=3
=>x=2 hoặc x=3
Vậy x=2 hoặc x=3
a) \(37-\left(x-25\right)=x+14\)
\(\Leftrightarrow\)\(37-x+25=x+14\)
\(\Leftrightarrow\)\(x+x=37+25-14\)
\(\Leftrightarrow\)\(2x=48\)
\(\Rightarrow\)\(x=\frac{48}{2}=24\)
Vậy \(x=24\)
b) \(11-\left(x-3\right)^2=0\)
\(\Leftrightarrow\)\(\left(x-3\right)^2=11-0=11\)
\(\Leftrightarrow\)\(x-3=\sqrt{11}\)
\(\Rightarrow\)\(x=\sqrt{11}+3\)
Vậy \(x=\sqrt{11}+3\)