Chứng minh rằng Với moin n thuộc N thì A = 99..9800..01 là số chính phg ( có n chữ số 9 và n chữ số 0)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 99...9800...01 ( n thuộc N sao )
= 99...9 . \(10^{n+2}\)+ 8.\(10^{n+1}\)+1
= (\(10^{n-1}\) - 1).\(10^{n+2}\)+ 8.\(10^{n+1}\) + 1
= \(10^{2n+2}\)+ - 10.\(10^{n+1}\)+ 8.\(10^{n+1}\)+ 1
= \(10^{2n+2}\) - 2.\(10^{n+1}\)+ 1
= (\(10^{n+1}\) - 1)²
Hok tốt~
3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9
mà 2n-n=n=>n chia hết cho 9 => đpcm
Ta có: A= 9999...9800...01. Đặt a = 111....1 (n chữ số 1) => 9a+1 = 10n
=> A = 9.a.10n+2 + 8.10n+1 + 1 = 9.a.(9a+1).100 + 8(9a+1).10 + 1
=> A= 8100a2 + 900a + 720a + 80 +1
=> A=8100a2 + 1620a + 81 = (90a+9)2 = (9999...9)2 (n+1 chữ số 9)
=> A là số chính phương
Có : A = 999....9900....0 ( n+1 số 9 và n+1 số 0 ) - 999....9 ( n+1 số 9 )
= 999...9 ( n+1 số 9 ) . 10^n+1 - 999....9 ( n+1 số 9 )
= 999....9 ( n+1 số 9 ) . (10^n+1 - 1 )
= 999....9 ( n+1 số 9 ) . 999....9 ( n+1 số 9 )
= 999....9^2 ( n+1 số 9 ) là 1 số chình phương
Tk mk nha