K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2016

(a+b-c)/c+2 =(b+c-a)/c+2 =(c+a-b)/c+2 

rồi bạn tự làm tiếp nhé

xét 2 trường hợp

thay vào thôi nhé bạn 

 Nhớ k cho mình nhé

18 tháng 11 2015

\(\frac{a+b-c}{c}+2=\frac{b+c-a}{a}+2=\frac{c+a-b}{b}+2\)

\(\frac{a+b+c}{c}=\frac{b+c+a}{a}=\frac{c+a+b}{b}\)

=>a=b=c

=>A=(1+b/a)(1+a/c)(1+c/b) = (1+1)(1+1)(1+1) =2.2.2 =8

24 tháng 1 2018

nhận được thông báo thì kéo chuột xuống xem bài giải của t ở phần duyệt bài nhé

23 tháng 1 2018

Nhỏ nhất hay lớn nhất

28 tháng 5 2016

Ta có : \(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

Tương tự : \(\frac{b^2}{a+c}+\frac{a+c}{4}\ge b\) ; \(\frac{c^2}{a+b}+\frac{a+b}{4}\ge c\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\left(a+b+c\right)-\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}=\frac{3}{2}\)

Vậy Min = 3/2 \(\Leftrightarrow a=b=c=1\)

12 tháng 7 2023

Mày nhìn cái chóa j

22 tháng 3 2019

Ta có:\(P=a^2+\frac{1}{a^2}+b^2+\frac{1}{b^2}+c^2+\frac{1}{c^2}\)

\(\Rightarrow P\ge a^2+b^2+c^2+\frac{9}{a^2+b^2+c^2}\)(bđt cauchy-schwarz)

\(P\ge\frac{a^2+b^2+c^2}{81}+\frac{9}{a^2+b^2+c^2}+\frac{80\left(a^2+b^2+c^2\right)}{81}\)

\(\Rightarrow P\ge\frac{2}{3}+\frac{80\left(a^2+b^2+c^2\right)}{81}\left(AM-GM\right)\)

Sử dụng đánh giá quen thuộc:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=27\)

\(\Rightarrow P\ge\frac{2}{3}+\frac{80\cdot27}{81}=\frac{82}{3}\)

"="<=>a=b=c=3

23 tháng 3 2016

Đặt:⎧⎩⎨⎪⎪⎪⎪⎪⎪a=13xb=45yc=32z{a=13xb=45yc=32z (x,y,z>0)(x,y,z>0)
Khi đó điều kiện đã cho trở thành:3x+5y+7z≤15xyz3x+5y+7z≤15xyz
Áp dụng AM−GMAM−GM ta có:
3x+5y+7z≥15x3y5z7−−−−−−√153x+5y+7z≥15x3y5z715
=>15xyz≥15x3y5z7−−−−−−√15=>x6y5z4≥1.=>15xyz≥15x3y5z715=>x6y5z4≥1.
Ta có:
P=3x+2.54y+3.23z=12(6x+5y+4z)≥12.15x6y5z4−−−−−−√15≥152P=3x+2.54y+3.23z=12(6x+5y+4z)≥12.15x6y5z415≥152   (AM−GM)   (AM−GM)
Dấu ′=′′=′ xảy ra <=><=> x=y=z=1x=y=z=1 hay a=13;b=45;c=32