Sân bay Nội Bài cách Sân bay Đà Nẵng 600km. Hai máy bay từ 2 sân bay này cất cánh đồng thời và bay về phía gặp nhau. Sau 1/2h chúng gặp nhau. Tính vận tốc của mỗi máy bay biết vận tốc của 1 trong 2 máy bay gấp đôi vận tốc máy bay kia
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x (km/h) là vận tốc của máy bay cánh quạt. Điều kiện: x > 0
Ta có vận tốc của máy bay phản lực là x + 300 (km/h)
Thời gian máy bay cánh quạt bay là 600/x (giờ)
Thời gian máy bay phản lực bay là 600/(x + 300) (giờ)
Máy bay phản lực bay sau 10 phút và đến trước 10 phút nên thời gian máy bay phản lực bay ít hơn máy bay cánh quạt là:
10 phút + 10 phút = 20 phút = 1/3 (giờ)
Theo đề bài, ta có phương trình:
Giá trị x = -900 không thỏa mãn điều kiện bài toán.
Vậy vận tốc của máy bay cánh quạt là 600 km/h.
vận tốc của máy bay phản lực là 600 + 300 = 900 km/h
1.
Theo đề bài, suy ra thời gian đi từ Hà Nội đến Đà Nẵng của máy bay phản lực ít hơn máy bay trực thăng $20$ phút, tức $\frac{1}{3}$ h.
Gọi vận tốc của máy bay phản lực là $a$ km/h thì vận tốc máy bay trực thăng là $a-300$ (km/h). ĐK: $a>300$
Theo bài ra ta có:
$\frac{600}{a-300}-\frac{600}{a}=\frac{1}{3}$
$\Leftrightarrow a(a-300)-540000=0$
$\Leftrightarrow (a-900)(a+600)=0$
$\Rightarrow a=900$ (km/h) (vận tốc mb phản lực)
Vận tốc mb trực thăng: $a-300=600$ (km/h)
2.
Gọi đỉnh núi là $A$. Hai điểm cách nhau 1 m lần lượt là $B,C$.
Từ $A$ kẻ $AH\perp BC$. $AH$ chính là chiều cao của ngọn núi.
Ta có:
$\frac{AH}{BH}=\tan B=\tan 40^0$
$\frac{AH}{CH}=\tan C=\tan 32^0$
$\Rightarrow AH=BH\tan 40^0=CH\tan 32^0=\frac{BH+CH}{\frac{1}{\tan 40}+\frac{1}{\tan 32}}=\frac{1}{\frac{1}{\tan 40}+\frac{1}{\tan 32}}=0,36$ (km)
Gọi x,y ( km/h ) lần lượt là vận tốc của máy bay trực thăng và máy bay phản phản lực ( ĐK: x,y > 0 )
Thời gian máy bay trực thăng bay từ Đà Năng ra Hà Nội là : \(\dfrac{600}{x}\) ( giờ )
Thời gian máy bay phản lực bay từ Hà Nội ra Đà Nẵng là : \(\dfrac{600}{y} \) ( giờ )
Vì vận tốc máy bay phản lực lớn hơn vận tốc trực thăng là 300km/h nên ta có phương trình : y - x = 300 ( 1 )
Vì sau khi trực thăng xuất phát 10p thì máy bay phản lực xuất phát và đến sớm hơn trực thăng 10p nên ta có phương trình : \(\dfrac{600}{x}\) = \(\dfrac{600}{y}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) ⇔ \(\dfrac{600}{x}\) = \(\dfrac{600}{y}\) + \(\dfrac{2}{3}\) ( 2 )
Từ (1) và (2) => \(\begin{cases} y - x = 300 \\ \dfrac{600}{x}=\dfrac{600}{y} + \dfrac{2}{3} \end{cases} \)⇔ \(\begin{cases} y = 300 + x \\ \dfrac{600}{x} = \dfrac{600}{x + 300} +\dfrac{2}{3} \end{cases} \) ⇔\(\begin{cases} y=300+x\\ 600x + 180000 = 600x + \dfrac{2}{3}.x^2+200x \end{cases} \)⇔ \(\begin{cases} y=300+x\\ \dfrac{2}{3}x^2 + 200x - 180000 (*) \end{cases} \)
Giải phương trình (*) ta dc \(\left[\begin{array}{} x = 390,83( nhận)\\ x= -690,83(loại) \end{array} \right.\)=> \(\begin{cases} x = 390,83\\ y = 690,83 \end{cases} \)
Vậy...
Để tính thời gian cần thiết để máy bay từ Hà Nội đến Đà Nẵng, chúng ta có thể sử dụng công thức thời gian, tức là quãng đường chia cho tốc độ. Trong trường hợp này, quãng đường là 640 km và tốc độ là 480 km/h.
1. Chia quãng đường cho tốc độ: 640 km / 480 km/h = 1.3333 giờ
2. Chuyển đổi giờ sang phút bằng cách nhân với 60: 1.3333 giờ * 60 phút/giờ = 80 phút
Vì vậy, đáp án đúng là 80 phút.
Máy bay đang ở sân Bay Nội Bài mà Nội Bài là thuộc Hà Nội
Vậy thời gian để máy bay bay từ Hà Nội đến Hà Nội là không giờ em nhé.