K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2021

\(\left\{{}\begin{matrix}\dfrac{4x+3y}{xy}=\dfrac{4}{11}\\\dfrac{2x+y}{xy}=\dfrac{4}{5}\end{matrix}\right.\)(x,y\(\ne0\))<=>\(\left\{{}\begin{matrix}\dfrac{4}{y}+\dfrac{3}{x}=\dfrac{4}{11}\\\dfrac{2}{y}+\dfrac{1}{x}=\dfrac{4}{5}\end{matrix}\right.\)

đặt \(\dfrac{1}{x}=a\)

\(\dfrac{1}{y}=b\)

=>\(\left\{{}\begin{matrix}3a+4b=\dfrac{4}{11}\\a+2b=\dfrac{4}{5}\end{matrix}\right.< =>\left\{{}\begin{matrix}3a+4b=\dfrac{4}{11}\\3a+6b=\dfrac{12}{5}\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}-2b=-\dfrac{112}{55}\\a+2b=\dfrac{4}{5}\end{matrix}\right.< =>\left\{{}\begin{matrix}b=\dfrac{56}{55}\\a=\dfrac{-68}{55}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{1}{x}=a=-\dfrac{68}{55}\\\dfrac{1}{y}=b=\dfrac{56}{55}\end{matrix}\right.< =>\left\{{}\begin{matrix}x=\dfrac{-55}{68}\left(TM\right)\\y=\dfrac{55}{56}\left(TM\right)\end{matrix}\right.\)

vậy...

Bạn xem hình tham khảo nhé

undefinedundefined

9 tháng 10 2021

\(\left\{{}\begin{matrix}\dfrac{xy}{4x+3y}=\dfrac{4}{7}\\\dfrac{xy}{2x+y}=\dfrac{4}{5}\end{matrix}\right.\)\(\left(đk:4x\ne-3y,-2x\ne y,xy\ne0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4x+3y}{xy}=\dfrac{7}{4}\\\dfrac{2x+y}{xy}=\dfrac{5}{4}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4x+3y}{xy}=\dfrac{7}{4}\\\dfrac{4x+2y}{xy}=\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=-\dfrac{3}{4}\\\dfrac{xy}{2x+y}=\dfrac{4}{5}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{3}\\y=1\end{matrix}\right.\)

23 tháng 5 2021

Đk: \(x\ne0,y\ne-1\)

\(\left\{{}\begin{matrix}2x+3y=xy+5\left(1\right)\\\dfrac{1}{x}+\dfrac{1}{y+1}=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=xy+5\\y+1+x=x\left(y+1\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+3y=xy+5\\y+1=xy\end{matrix}\right.\)

\(\Rightarrow2x+3y=y+1+5\)

\(\Leftrightarrow x=3-y\) thay vào (1) có:

\(2\left(3-y\right)+3y=\left(3-y\right)y+5\)

\(\Leftrightarrow y^2-2y+1=0\)

\(\Leftrightarrow y=1\) \(\Rightarrow x=2\)(tm)

Vậy (x;y)=(2;1)

 

17 tháng 6 2021

Ai giúp mình với đi ạ
Mình cảm ơn nhiều.

17 tháng 6 2021

a) \(\left\{{}\begin{matrix}\dfrac{2x}{x+1}+\dfrac{y}{y+1}=2\\\dfrac{x}{x+1}+\dfrac{3y}{y+1}=-1\end{matrix}\right.\)(Đk: \(x\ne-1;y\ne-1\))

Đặt \(\dfrac{x}{x+1}\)  là A

\(\dfrac{y}{y+1}\) là B 

Ta có HPT mới : \(\left\{{}\begin{matrix}2A+B=2\\A+3B=-1\end{matrix}\right.\)(1)

Giải HPT (1) ta được A=  \(\dfrac{7}{5}\) ; B=\(-\dfrac{4}{5}\)

+Với A=\(\dfrac{7}{5}\) ta có: 

\(\dfrac{x}{x+1}=\dfrac{7}{5}\)

<=>\(5x=7x+7\)

<=>-2x=7

<=> x=\(-\dfrac{7}{2}\)

+Với B = \(-\dfrac{4}{5}\) ta có:

\(\dfrac{y}{y+1}=-\dfrac{4}{5}\)

<=>5y=-4y-4

<=>9y=-4

<=>y=\(-\dfrac{4}{9}\)

Vậy HPT có nghiệm (x;y) = \(\left\{-\dfrac{7}{2};-\dfrac{4}{9}\right\}\)

 

a: =>xy-2x+2y-4=xy+y và 5xy+10x+y+2=5xy-10x-2y+4

=>-2x+y=4 và 20x+3y=2

=>x=-5/13; y=42/13

b: =>4x+2|y|=8 và 4x-3y=1

=>2|y|-3y=7 và 4x-3y=1

TH1: y>=0

=>2y-3y=7 và 4x-3y=1

=>-y=7 và 4x-3y=1

=>y=-7(loại)

TH2: y<0

=>-2y-3y=7 và 4x-3y=1

=>y=-7/5; 4x=1+3y=1-21/5=-16/5

=>x=-4/5; y=-7/5

8 tháng 2 2023

ĐKXĐ : \(x;y\ne0\)

Ta có \(\dfrac{y}{x}-\dfrac{2x}{y}=\dfrac{-5}{2}-\dfrac{2}{xy}\)

\(\Leftrightarrow\dfrac{y^2-2x^2}{xy}=\dfrac{-5xy-4}{2xy}\)

\(\Leftrightarrow2y^2-4x^2+5xy=-4\) (1) 

Kết hợp \(x^2+xy-y^2=5\) (2)

ta có : \(-5.\left(2y^2-4x^2+5xy\right)=4\left(x^2+xy-y^2\right)\) 

\(\Leftrightarrow16x^2-29xy-6y^2=0\)

\(\Leftrightarrow16x^2-32xy+3xy-6y^2=0\)

\(\Leftrightarrow\left(x-2y\right)\left(16x+3y\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2y\\x=-\dfrac{3y}{16}\end{matrix}\right.\)

Thay \(x=-\dfrac{3y}{16}\) vào (2) ta được 

\(\dfrac{9y^2}{256}-\dfrac{3y^2}{16}-y^2=5\)

\(\Leftrightarrow y^2=-\dfrac{256}{59}\Leftrightarrow y\in\varnothing\) (loại) 

Khi x = 2y thay vào (2) ta được 

4y2 + 2y2 - y2 = 5

\(\Leftrightarrow y=\pm1\) (tm)

Với y = 1 => x = 2

y = -1 => x = -2

Vậy (x;y) = (2;1) ; (-2;-1) 

a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)-xy=100\\xy-\left(x-2\right)\left(y-2\right)=64\end{matrix}\right.\)

=>xy+3x+2y+6-xy=100 và xy-xy+2x+2y-4=64

=>3x+2y=94 và 2x+2y=68

=>x=26 và x+y=34

=>x=26 và y=8

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3+2}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5y+20-11}{y+4}=9\end{matrix}\right.\)

=>\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+1}-\dfrac{2}{y+4}=4-3=1\\\dfrac{-2}{x+1}+\dfrac{11}{y+4}=9+5-2=12\end{matrix}\right.\)

=>x+1=18/35; y+4=9/13

=>x=-17/35; y=-43/18

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix} \frac{1}{x}+\frac{1}{y}=\frac{3}{8}\\ \frac{1}{y}+\frac{1}{z}=\frac{3}{4}\\ \frac{1}{z}+\frac{1}{x}=\frac{5}{6}\end{matrix}\right.\Rightarrow 2(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{3}{8}+\frac{3}{4}+\frac{5}{6}\)

\(\Leftrightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{47}{48}\)

\(\Rightarrow \left\{\begin{matrix} \frac{1}{z}=\frac{47}{48}-\frac{3}{8}\\ \frac{1}{x}=\frac{47}{48}-\frac{3}{4}\\ \frac{1}{y}=\frac{47}{48}-\frac{5}{6}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{48}{29}\\ y=\frac{48}{11}\\ z=\frac{48}{7}\end{matrix}\right.\)