K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2021

Ta có \(3a+1\ge\left(\dfrac{\sqrt{10}-1}{3}a+1\right)^2\Leftrightarrow a\left(3-a\right)\ge0\) (luôn đúng)

Do đó \(\sqrt{3a+1}\ge\dfrac{\sqrt{10}-1}{3}a+1\).

Tương tự, \(\sqrt{3b+1}\ge\dfrac{\sqrt{10}-1}{3}b+1;\sqrt{3c+1}\ge\dfrac{\sqrt{10}-1}{3}c+1\).

Do đó \(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\ge\sqrt{10}+2\).

Dấu "=" xảy ra khi chẳng hạn a = 3; b = c = 0

30 tháng 5 2021

Tham khảo:

https://hoc24.vn/hoi-dap/tim-kiem?id=219071991005&q=Cho%203%20s%E1%BB%91%20th%E1%BB%B1c%20kh%C3%B4ng%20%C3%A2m%20a%2Cb%2Cc%20v%C3%A0%20a%20b%20c%3D3%20T%C3%ACm%20GTLN%20v%C3%A0%20GTNN%20c%E1%BB%A7a%20bi%E1%BB%83u%20th%E1%BB%A9c%20K%3D%5C%28%5Csqrt%7B3a%201%7D%20%5Csqrt%7B3b%201%7D%20%5Csqrt%7B3c%201%7D%5C%29

7 tháng 5 2022

???????????????loằng ngoằng quá. Tui không hỉu cái GTNN

8 tháng 5 2022

GTNN là tắt của giá trị nhỏ nhất, 

Trong bài này bạn biến đổi sao cho biểu thức \(P\ge a\)   (số a là số biết trước) 

VD: Bạn đưa về dạng nào đó của biểu thức mà nó luôn lớn hơn hoặc bằng \(\dfrac{1}{3}\) Bạn có thể viết \(P\ge\dfrac{1}{3}\) thì GTNN của \(P=\dfrac{1}{3}\)  hay \(minP=\dfrac{1}{3}\)

Tìm được GTNN rồi thì bạn tìm ẩn để dấu "=" xảy ra, nghĩa là để BĐT xảy ra dấu =, lúc đó biểu thức P đạt giá trị nhỏ nhất,

 VD như: \(minP=\dfrac{1}{3}\) <=> Dấu = xảy ra

                                  <=> x = b (x là ẩn và b là biết trước)

Ở một số bài có thể cho điều kiện của ẩn.

2 tháng 6 2017

sai đề ở căn thứ 3

2 tháng 6 2017

\(\sqrt{3a^2+2ab+3b^2}+\sqrt{3b^2+2bc+3c^2}+\sqrt{3c^2+2ca+3a^2}\)

giúp mình với ạ =))

NV
13 tháng 1

Biểu thức này có vẻ chỉ tìm được min chứ ko tìm được max:

Min:

\(P^2=a+b+c+a^3b^3+b^3c^3+c^3a^3+2\sqrt{\left(a+b^3c^3\right)\left(b+c^3a^3\right)}+2\sqrt{\left(a+b^3c^3\right)\left(c+a^3b^3\right)}+2\sqrt{\left(b+c^3a^3\right)\left(c+a^3b^3\right)}\)

\(P^2\ge a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\ge a+b+c=2\)

\(\Rightarrow P\ge\sqrt{2}\)

\(P_{min}=\sqrt{2}\) khi \(\left(a;b;c\right)=\left(0;0;2\right)\) và các hoán vị

1 tháng 2 2022

đề sai

1 tháng 2 2022

sai là sai thế nào

15 tháng 2 2021

Bổ đề: \(a^3+b^3+c^3\ge\dfrac{1}{9}\left(a+b+c\right)^3\) \(\left(\forall a,b,c>0\right)\)

chứng minh bổ đề: \(\Sigma_{cyc}\left(\dfrac{a^3}{a^3+b^3+c^3}\right)+\dfrac{1}{3}+\dfrac{1}{3}\ge3\sqrt[3]{\left(\Pi_{cyc}\dfrac{a^3}{a^3+b^3+c^3}\right).\dfrac{1}{3}.\dfrac{1}{3}}\)

hoán vị theo a,b,c

ta được: \(3\ge\dfrac{3\left(a+b+c\right)}{\sqrt[3]{9.\left(a^3+b^3+c^3\right)}}\)

mũ 3 hai vế ta có được bất đẳng thức bổ đề: \(a^3+b^3+c^3\ge\dfrac{1}{9}\left(a+b+c\right)^3\)

Áp dụng bất C-S: 

\(\sqrt{a^3+3b}+\sqrt{b^3+3c}+\sqrt{c^3+3a}\ge\sqrt{\left(1+1+1\right)\left(a^3+b^3+c^3+3a+3b+3c\right)}\)

\(\ge\sqrt{3.\left[3+3\left(a+b+c\right)\right]}=\sqrt{36}=6\)

Dấu "=" xảy ra tại a=b=c=1

NV
1 tháng 2 2022

\(P=1\sqrt{a-1}+1\sqrt{b-2}+1\sqrt{c-3}\le\dfrac{1}{2}\left(1+a-1+1+b-2+1+c-3\right)=3\)

\(P_{max}=3\) khi \(\left(a;b;c\right)=\left(2;3;4\right)\)

\(P^2=a+b+c-6+2\left(\sqrt{\left(a-1\right)\left(b-2\right)}+\sqrt{\left(a-1\right)\left(c-3\right)}+\sqrt{\left(b-2\right)\left(c-3\right)}\right)\)

\(P^2\ge a+b+c-6=3\)

\(P\ge\sqrt{3}\)

\(P_{min}=\sqrt{3}\) khi \(\left(a;b;c\right)=\left(1;2;6\right);\left(1;5;3\right);\left(4;2;3\right)\)

1 tháng 2 2022

thầy giải thích thêm phần dấu bằng xảy ra của phần tìm giá trị nhỏ nhất được không ạ