Cho tam giác ABC nhọn nội tiếp (O;R). D là một điểm thuộc cung nhỏ BC. Gọi I, H, K lần lượt là hình chiếu của D trên AB, BC, CA.
a) Chứng minh H, I, K thẳng hàng ( Câu a không cần làm nhé)
b) Chứng minh \(\frac{BC}{DH}=\frac{AB}{DI}+\frac{AC}{DK}\)
c) Tìm vị trí của D trên cung BC để IK có giá trị lớn nhất
d) Tìm vị trí của D trên cung BC để \(\frac{BC}{DH}+\frac{AB}{DI}+\frac{AC}{DK}\) có giá trị nhỏ nhất
e)/ Gọi P,Q lần lượt là điểm đối xứng của D qua AB, AC. G là trực tâm của tam giác ABC. Chứng minh P, G, Q thẳng hàng