K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2018

a/ \(2n+12⋮n+2\)

Mà \(n+2⋮n+2\)

\(\Leftrightarrow\hept{\begin{cases}2n+12⋮n+2\\2n+4⋮n+2\end{cases}}\)

\(\Leftrightarrow8⋮n+2\)

\(\Leftrightarrow n+2\inƯ\left(8\right)\)

Suy ra :

+) n + 2 = 1 => n = -1 (loại)

+) n + 2 = 2 => n = 0

+) n + 2 = 4 => n = 2

+) n + 2 = 8 => n = 6

Vậy ......

b/ \(3n+5⋮n-2\)

Mà \(n-2⋮n-2\)

\(\Leftrightarrow\hept{\begin{cases}3n+5⋮n-2\\3n-6⋮n-2\end{cases}}\)

\(\Leftrightarrow11⋮n+2\)

\(\Leftrightarrow n+2\inƯ\left(11\right)\)

\(\Leftrightarrow\orbr{\begin{cases}n+2=1\\n+2=11\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}n=-1\left(loại\right)\\n=9\end{cases}}\)

Vậy ..

7 tháng 1 2018

a/ \(\left(x+3\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2+1=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-3\\x^2=-1\left(loại\right)\end{cases}}\) 

Vậy ....

b/ \(\left(x+7\right)\left(x^2-36\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+7=0\\x^2-36=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-7\\x^2=36\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-7\\x=6or=-6\end{cases}}\)

Vậy ...

8 tháng 12 2017

giup minh tra loi nha

24 tháng 10 2015

1)

Ta có:

x + 10 chia hết cho 5

10 chia hết cho 5

\(\Rightarrow\)x chia hết cho 5

 

x - 18 chia hết cho 6

18 chia hết cho 6

\(\Rightarrow\)x chia hết cho 6

 

x + 21 chia hết cho 7

21 chia hết cho 7

\(\Rightarrow\)x chia hết cho 7

\(\Rightarrow\)\(\in\)BC ( 5;6;7 )

BC ( 5;6;7 ) = {0 ; 210 ; 420 ; 630 ; 840 ; ... }

Vì x \(\in\)BC( 5;6;7 ) và 500 < x < 700\(\Rightarrow\)x = 630

 

 

23 tháng 11 2015

a) 7 chia hết cho x+ 1

x + 1 thuộc Ư(7) = {1;7}

x + 1 = 1 => x=  0

x + 1 = 7 => x = 6

x  thuộc {0;6}

x.y = 36 = 1.36 = 2.18 = 3.12 = 4.9 = 

Vậy các cặp( x ; y )là: (1;36) ; (2;18) ; (3;12) ; (4;9)

2n + 2 chia hết cho x   + 2

2x + 4 - 2 chia hết cho x + 2

2 chia hết cho x + 2

x + 2 thuộc Ư(2) = {-2;-1;1;2}
Mà x là số tự nhiên nên x=  0

28 tháng 7 2018

 \(A=2018-\left|x-7\right|-\left|y+2\right|\)

Ta có: \(\hept{\begin{cases}\left|x-7\right|\ge0\forall x\\\left|y+2\right|\ge0\forall y\end{cases}}\Rightarrow2018-\left|x-7\right|-\left|y+2\right|\le2018\)

\(A=2018\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+2\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}}\)

Vậy \(A_{m\text{ax}}=2018\Leftrightarrow\hept{\begin{cases}x=7\\y=-2\end{cases}}\)

Tham khảo~

28 tháng 8 2018

a) Ta có:

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

\(-5n⋮5\) với n thuộc Z

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z

b) Ta có:

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n\)

\(=5\left(n^2+n\right)\)

\(5\left(n^2+n\right)⋮5\)

\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)

c) Ta có:

\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)

\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)

\(2\left(xy+1\right)y^{2003}⋮2\)

\(2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)

phần c 

\(n-7⋮2n+3\)

\(2\left(n-7\right)-\left(2n+3\right)⋮2n+3\)

\(2n-4-2n-3⋮2n+3\)

\(-7⋮2n+3\)

\(\Rightarrow2n+3\inƯ\left(-7\right)=\left\{\pm1;\pm7\right\}\)

Ta có bảng xét :

2n+3-11-77
2n-4-2-104
n-11-52
21 tháng 12 2018

\(n+2⋮3n+5\)

\(\Rightarrow3\left(n+2\right)⋮3n+5\)

\(\Rightarrow3n+5+1⋮3n+5\)

\(\Rightarrow1⋮3n+5\)

\(\Rightarrow3n+5\in\left\{1,-1\right\}\)

\(\Rightarrow n=-2\)(loại)

\(3n+7⋮n-2\)

\(\Rightarrow2\left(3n+7\right)⋮n-2\)

\(\Rightarrow6n+14⋮n-2\)

\(\Rightarrow3\left(n-2\right)+20⋮n-2\)

\(\Rightarrow20⋮n-2\)

\(\Rightarrow n-2\in\left\{20,1,10,2,5,4,-20,-1,-10,-2,-5,-4\right\}\)

...(như câu a)

22 tháng 12 2018

câu b đâu