K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2018

Vẽ hình giúp mình luôn nha cảm ơn nhiều

a: Xét (O) có

CA,CM là tiếp tuyến

Do đó: CA=CM và OC là phân giác của \(\widehat{MOA}\)

=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)

CA=CM

=>C nằm trên đường trung trực của AM(1)

OA=OM

=>O nằm trên đường trung trực của AM(2)

Từ (1) và (2) suy ra OC là đường trung trực của AM

=>OC\(\perp\)AM

b: Xét tứ giác CAOM có \(\widehat{CAO}+\widehat{CMO}=90^0+90^0=180^0\)

nên CAOM là tứ giác nội tiếp

=>C,A,O,M cùng thuộc một đường tròn

c: Xét (O) có

DM,DB là tiếp tuyến

Do đó: OD là phân giác của góc MOB và DM=DB

=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)

\(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)

=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)

=>\(2\cdot\widehat{COD}=180^0\)

=>\(\widehat{COD}=90^0\)

=>ΔCOD vuông tại O

Xét ΔOCD vuông tại O có OM là đường cao

nên \(MC\cdot MD=OM^2\)

mà MC=CA và DM=DB

nên \(CA\cdot DB=OM^2=R^2\)

21 tháng 2 2021

a) Xét tứ giác MAOB có:

\(\widehat{MAO}+\widehat{MBO}=90^o+90^o=180^o\) (MA,MB là tiếp tuyến)

=> Tứ giác MAOB nội tiếp (dhnb)

b) Tam giác CAD vuông tại C (tiếp tuyến tại C) và có BC là đường cao (góc ABC nội tiếp chắn nửa đường tròn)

\(\Rightarrow AC^2=AB.AD\) (hệ thức lượng)    (1)

Có: \(AC^2=\left(2R\right)^2=4R^2\)    (2) 

Từ (1) và (2) suy ra \(AB.AD=4R^2\)

 

a) Xét tứ giác MAOB có

\(\widehat{OAM}\) và \(\widehat{OBM}\) là hai góc đối

\(\widehat{OAM}+\widehat{OBM}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: MAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

b) Xét (O) có

ΔABC nội tiếp đường tròn(A,C,B∈(O))

AC là đường kính(gt)

Do đó: ΔABC vuông tại B(Định lí)

⇔CB⊥AB tại B

⇔CB⊥AD tại B

Áp dụng hệ thức lượng trong tam giác vuông vào ΔADC vuông tại C có CB là đường cao ứng với cạnh huyền AD, ta được:

\(AB\cdot AD=AC^2\)

\(\Leftrightarrow AB\cdot AC=\left(2\cdot R\right)^2=4R^2\)(đpcm)

a: Xét tứ giác IAOC có

\(\widehat{IAO}+\widehat{ICO}=90^0+90^0=180^0\)

=>IAOC là tứ giác nội tiếp

=>I,A,O,C cùng thuộc một đường tròn

b: Xét (O) có

IA,IC là tiếp tuyến

Do đó: IA=IC

=>I nằm trên đường trung trực của AC(1)

ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OI là đường trung trực của AC

=>OI\(\perp\)AC

c: Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

Ta có: OI là đường trung trực của AC

=>OI vuông góc với AC tại trung điểm của AC

mà OI cắt AC tại D

nên OI\(\perp\)AC tại D và D là trung điểm của AC

Xét tứ giác CDOE có

\(\widehat{CDO}=\widehat{CEO}=\widehat{ECD}=90^0\)

=>CDOE là hình chữ nhật

=>CO=DE=R

d: Xét ΔIAC có IA=IC

nên ΔIAC cân tại I

=>\(\widehat{IAC}=\widehat{ICA}\)

Ta có: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)MB tại C

=>ΔACM vuông tại C

Ta có: \(\widehat{IAC}+\widehat{IMC}=90^0\)(ΔACM vuông tại C)

\(\widehat{ICA}+\widehat{ICM}=\widehat{ACM}=90^0\)

mà \(\widehat{IAC}=\widehat{ICA}\)

nên \(\widehat{IMC}=\widehat{ICM}\)

=>IM=IC

mà IC=IA

nên IM=IA

=>I là trung điểm của MA

=>\(MA=2\cdot IC\)

Xét ΔABM vuông tại A có AC là đường cao

nên \(MC\cdot MB=MA^2\)

=>\(MC\cdot MB=\left(2\cdot IC\right)^2=4\cdot IC^2\)

=>\(IC^2=\dfrac{1}{4}\cdot MC\cdot MB\)

18 tháng 5 2018

Ta có: \(OD//O'B\left(\perp AB\right)\)

\(\Rightarrow\frac{AO}{AO'}=\frac{OD}{O'B}=\frac{R}{R'}=\frac{OI}{O'M}=\frac{OI}{O'I}\)

 OI cắt O’I và A, I, M thẳng hàng ( gt ) nên suy ra OI // O’M \(\Rightarrow\widehat{DOI}=\widehat{BO'M}\)

Mà \(\widehat{BDI}=\frac{1}{2}\widehat{DOI}=\frac{1}{2}\)sđ cung DI và \(\widehat{BIM}=\frac{1}{2}\widehat{BO'M}=\frac{1}{2}\)sđ cung \(BM\Rightarrow\widehat{BDI}=\widehat{BIM}\)

Nên AM là tiếp tuyến của đường tròn ngoại tiếp của tam giác BDI ( đpcm )

18 tháng 5 2018

có vẽ hình ko ?

ΔKBO=ΔKCO

=>KB=KC

=>KO là trung trực của BC

ΔKCO đồng dạng với ΔCIO

=>OC/OI=OK/OC

=>OC^2=OI*OK

=>OI*OK=ON^2

=>OI/ON=ON/OK

=>ΔOIN đồng dạng với ΔONK

=>gócc ONI=góc OKN

Tương tự, ta có: OI/OM=OM/OK

=>ΔMKO đồng dạng với ΔIMO

=>góc MKO=góc IMO=góc INO

=>góc MKD=góc NKD

=>K,M,N thẳng hàng

=>K luôn thuộc MN