K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2021

Dễ vãi 

9 tháng 5 2021

dễ làm ik chứ nói thế ai chả nói đc

 

12 tháng 4 2022

Tham khảo 

https://asknlearn247.com/question/cho-duong-tron-o-r-duong-kinh-ab-co-dinh-tren-tia-doi-cua-tia-ab-lay-diem-c-sao-cho-ac-r-qua-c-k-2018212/

12 tháng 4 2022

a, Xét (O), đường kính AB có: M ∈ (O)

⇒ ˆAMB=90°AMB^=90° (góc nội tiếp chắn nửa đường tròn)

⇒ AM ⊥ BP ⇒ ˆAMP=90°AMP^=90°

PC ⊥ AC (gt) ⇒ ˆACP=90°ACP^=90° Hay ˆBCP=90°BCP^=90°

Xét tứ giác ACPM có: ˆAMP+ˆACP=90°+90°=180°AMP^+ACP^=90°+90°=180°

Mà hai góc này ở vị trí đối nhau

⇒ Tứ giác ACPM nội tiếp đường tròn đường kính AP

b, Xét ΔBMA và ΔBCP có:

ˆBMA=ˆBCP=90°BMA^=BCP^=90° 

ˆPBCPBC^: góc chung

⇒ ΔBMA ~ ΔBCP (g.g)

⇒ BMBC=BABPBMBC=BABP (các cặp cạnh tương ứng tỉ lệ)

⇒ BM.BP = BA.BC

Có BC=BA+CA=2R+R=3R

⇒ BM.BP=BA.BC=2R.3R=6R²

c, Tứ giác ACPM nội tiếp đường tròn đường kính AP (cmt)

⇒ ˆCPA=ˆCMACPA^=CMA^ (góc nội tiếp chắn CACA⏜)

Hay ˆCPQ=ˆCMACPQ^=CMA^

Xét (O) có: A, M, N, Q ∈ (O)

⇒ Tứ giác AMNQ nội tiếp (O)

⇒ ˆAQN+ˆAMN=180°AQN^+AMN^=180° (tổng hai góc đối trong tứ giác nội tiếp)

Mà ˆAMC+ˆAMN=180°AMC^+AMN^=180° (hai góc kề bù)

⇒ ˆAQN=ˆCMAAQN^=CMA^ Hay ˆPQN=ˆCMAPQN^=CMA^

Mà ˆCPQ=ˆCMACPQ^=CMA^ (cmt)

⇒ ˆCPQ=ˆPQNCPQ^=PQN^

Mà hai góc này ở vị trí so le trong so PQ cắt CP và NQ

⇒ CP // NQ

d, Gọi D là trung điểm của BC, kẻ đường thẳng qua Q song song với MO cắt AO tại I

Mà BC cố định ⇒ D cố định

Có O, D cố định ⇒ I cố định

Xét ΔMBC có: G là trọng tâm của ΔMBC (gt)

⇒ DGDM=13DGDM=13

Xét ΔOMD có: GI // MO (cách vẽ)

⇒ DGDM=GIMODGDM=GIMO (hệ quả định lí Talet)

⇒ GIMO=13⇒GI=MO3=R3GIMO=13⇒GI=MO3=R3

Mà R không đổi

⇒ G luôn cách I một khoảng bằng R3R3

⇒ Khi M di động, G luôn thuộc đường tròn tâm I, bán kính R3R3

24 tháng 2 2021

Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.

Dễ thấy ^BNA = 900. Suy ra ΔΔBNA ~ ΔΔBCE (g.g) => BN.BE = BC.BA 

Cũng dễ có ΔΔBMA ~ ΔΔBCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK

Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM

= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA

=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A

=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)

Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)

Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const

Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi

=> Sin^IEL = const hay ILIE=constILIE=const. Mà IE không đổi (cmt) nên IL cũng không đổi

Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).

23 tháng 6 2017

Đường kính và dây của đường tròn

24 tháng 12 2023

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>AM\(\perp\)PB tại M

Xét tứ giác PKAM có \(\widehat{PKA}+\widehat{PMA}=90^0+90^0=180^0\)

nên PKAM là tứ giác nội tiếp

=>P,K,A,M cùng thuộc một đường tròn

b: Ta có: ΔOMN cân tại O

mà OA là đường cao

nên OA là đường trung trực của MN

=>BA là đường trung trực của MN

=>BM=BN

=>ΔBMN cân tại B

Ta có: ΔBMN cân tại B

mà BK\(\perp\)MN

nên BK là phân giác của góc MBN

=>BK là phân giác của \(\widehat{MBN}\)