Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Do I là trung điểm dây cung BC nên ta có \(\widehat{OIC}=90^0\). Xét tứ giác MOCI có \(\widehat{CMO}+\widehat{CIO} =90^0+90^0=180^0\) nên tứ giác MOIC là tứ giác nội tiếp đường tròn đường kính CO.
b. Do D là điểm chính giữa cung AB nên \(DO \perp AB\), mà \(CM \perp AB\) nên \(DO \parallel CM\). Từ đó dễ thấy \(dtCMD=dtCMO\).
\(\frac{1}{2}CM.MO\le\frac{1}{2}\frac{CM^2+OM^2}{2}=\frac{1}{4}OC^2=\frac{R^2}{4}\)
Vậy diện tích tam giác MCD lớn nhất bằng \(\frac{R^2}{4}\) khi \(OM=\frac{R}{\sqrt{2}}\)
Chúc em học tốt ^^
Vì em là học sinh lớp 9 nên cô chỉ hưỡng dẫn thôi nhé :) Cố gắng thi tốt nhé :)
a. ADBE là hình thoi vì có hai đường chéo vuông góc và cắt nhay tại trung điểm mỗi đường.
b. Tứ giác DMBI có góc DMB + góc DIB = 180 độ nên nó là tứ giác nội tiếp.
c. Cô nghĩa là chứng minh B, I, E thẳng hàng ms đúng, em xem lại xem.
Ta có: \(\widehat{MIE}=\widehat{MDB}=\widehat{MEB}\) suy ra tam gaisc MIE cân tại M hay MI = ME. Lại có ME = MD nên MD = MI.
d.Hệ thức có được là do \(\Delta BDC\sim\Delta IMC\left(g-g\right)\)
e. Ta chứng minh \(\widehat{O'IC}=\widehat{MIB}\)
Thật vậy, \(\widehat{O'IC}=\widehat{O'CI}=\widehat{DEA}=\widehat{MDO}=\widehat{MIB}\).
Khi đó \(90^0=\widehat{O'IC}+\widehat{O'IB}=\widehat{MIB}+\widehat{O'IB}\)
Vậy MI vuông góc O'I hay MI là tiếp tuyến (O')
a, Xét tứ giác CDME có
^MEC = ^MDC = 900
mà 2 góc này kề, cùng nhìn cạnh MC
Vậy tứ giác CDME là tứ giác nt 1 đường tròn
b, bạn ktra lại đề