K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2018

1.Cho  \(\frac{x^2-4x+4}{x^2-4}< 2\)

<=>\(\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}< 2\)

<=>\(\frac{x-2}{x+2}< 2\)

<=>\(\frac{x-2}{x+2}-2< 0\)

<=>\(\frac{x-2}{x+2}-\frac{2\left(x+2\right)}{x+2}< 0\)

<=>\(\frac{x-2-2\left(x+2\right)}{x+2}< 0\)

<=>\(\frac{x-2-2x-4}{x+2}< 0\)

<=>\(\frac{-x-6}{x+2}< 0\)

<=>\(\orbr{\begin{cases}\hept{\begin{cases}-x-6< 0\\x+2>0\end{cases}}\\\hept{\begin{cases}-x-6>0\\x+2< 0\end{cases}}\end{cases}}\)

<=>\(\orbr{\begin{cases}\hept{\begin{cases}x< -6\\x< -2\end{cases}}\\\hept{\begin{cases}x>-6\\x>-2\end{cases}}\end{cases}}\)

<=>\(\orbr{\begin{cases}x< -2\\x>-6\end{cases}}\)

Vậy -6 < x < -2

1 tháng 1 2018

1) \(\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)

\(\frac{x-2}{x+2}< 2\)

\(\Leftrightarrow\frac{x-2}{x+2}-2< 0\)

\(\Leftrightarrow\frac{x-2}{x+2}-\frac{2\left(x+2\right)}{x+2}< 0\)

\(\Leftrightarrow\frac{x-2-2x-4}{x+2}< 0\)

\(\Leftrightarrow\frac{-x-6}{x+2}< 0\)

\(\Leftrightarrow-x-6< 0\)

\(\Leftrightarrow-x< 6\)

\(\Leftrightarrow x>-6\)

vậy \(x>-6\)thì giá trị của phân thức \(>2\)

2) \(\frac{2x^2-4x+8}{x^3+8}\)

\(=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)

\(=\frac{2}{x+2}\)\(\left(x\ne-2\right)\)

khi đó \(\frac{2}{x+2}>2\)

\(\Leftrightarrow\frac{2}{x+2}-2>0\)

\(\Leftrightarrow\frac{2}{x+2}-\frac{2\left(x+2\right)}{x+2}>0\)

\(\Leftrightarrow\frac{2-2x-4}{x+2}>0\)

\(\Leftrightarrow\frac{-2x-2}{x+2}>0\)

\(\Leftrightarrow-2x-2>0\)

\(\Leftrightarrow-2x>2\)

\(\Leftrightarrow x< -1\)

13 tháng 4 2017

đề bài có sai ko zậy                

13 tháng 4 2017

k sai đâu bn

27 tháng 12 2016

a. \(\frac{9x^2-16}{3x^2-4x}\)(ĐKXĐ là: \(\hept{\begin{cases}x\ne0\\3x-4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne\frac{4}{3}\end{cases}}\))

b. \(\frac{9x^2-16}{3x^2-4x}\)\(=\frac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}=\frac{3x+4}{x}\)(1)

Thay x =3 vào (1), ta có:

\(\frac{3x+4}{x}=\frac{3.3+4}{3}=\frac{13}{3}\)

c. \(\frac{3x+4}{x}\left(x\ne0\right)\)

\(\frac{3x+4}{x}=0\)

\(\Rightarrow3x+4=0.x\)

\(\Leftrightarrow3x=-4\)

\(\Leftrightarrow x=\frac{-4}{3}\)

k cho mình nha cảm ơn nhìu

5 tháng 11 2017

Ví dụ : Tìm tập hợp các ước của 24

Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }

Ta có thể tìm các ước của a bằng cách lần lượt chia a cho

các số tự nhiên từ 1 đến a để xét xem a chia hết cho những

số nào ,khi đó các số ấy là ước của a

31 tháng 12 2017

1) Ta có: 
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz 
= [(x+y)³ + z³] - 3xy(x+y+z) 
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z) 
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy] 
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy) 
= (x+y+z)(x² + y² + z² - xy - xz - yz). 

31 tháng 12 2017

Câu 2:

\(\frac{x^2-y^2+6x+9}{x+y+3}\)

\(=\frac{x^2-y^2+x^2+6x+9-x^2}{x+y+3}\)

\(=\frac{ \left(x+3\right)^2-y^2}{x+y+3}\)

\(=\frac{\left(x-y+3\right)\left(x+y+3\right)}{x+y+3}\)

\(=x-y+3\)

23 tháng 12 2017

a)  ĐKXĐ:   x3 + 8 \(\ne\)0

\(\Leftrightarrow\)(x + 2)(x2 - 2x + 4)  \(\ne0\)

Vì  x2 - 2x + 4   > 0

nên  x + 2  \(\ne0\)   \(\Rightarrow\)\(\ne-2\)

b)   \(P=\frac{2x^2-4x+8}{x^3+8}\)\(=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)\(=\frac{2}{x+2}\)

c)  Khi  x = 2   thì  P = \(\frac{2}{2+2}\)\(\frac{1}{2}\)

23 tháng 12 2017

mình cần câu d) cơ

10 tháng 12 2018

a, ĐKXĐ \(x^2-4\ne0\)

        \(\Leftrightarrow\left(x-2\right)\left(x+2\right)\ne0\)

          \(\Leftrightarrow\orbr{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\)

        \(\Leftrightarrow\orbr{\begin{cases}X\ne2\\X\ne-2\end{cases}}\)

=> \(X\ne\pm2\)

Vậy \(X\ne\pm2\)

b,  Rút gọn

         A= \(\frac{x^2-4x+4}{x^2-4}\)           ĐKXĐ:  \(X\ne\pm2\)

<=> A= \(\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}\)

<=> A= \(\frac{x-2}{x+2}\)

Vậy A= \(\frac{x-2}{x+2}\) với \(X\ne\pm2\)

Hết r............

Thông cảm

10 tháng 12 2018

a, \(ĐKXĐ:x^2-4\ne0\Rightarrow x\ne\pm2\)

b,Đặt  \(A=\frac{x^2-4x+4}{x^2-4}\)

\(=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)

c, \(\left|x\right|=3\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\) (thỏa mãn ĐKXĐ)

Với x = 3 thì \(A=\frac{3-2}{3+2}=\frac{1}{5}\)

Với x = -3 thì \(A=\frac{-3-2}{-3+2}=5\)

d, \(A< 2\Rightarrow\frac{x-2}{x+2}< 2\Rightarrow x-2< 2x+4\Rightarrow-2-4< 2x-x\Rightarrow x>-6\)

17 tháng 11 2016

\(\frac{x+2}{x^2+4}\in Z\Rightarrow x+2⋮x^2+4\)

\(\Rightarrow\left(x+2\right)\left(x-2\right)⋮x^2+4\)

\(\Rightarrow x^2-4⋮x^2+4\)

Mà \(x^2+4⋮x^2+4\)

\(\Rightarrow\left(x^2+4\right)-\left(x^2-4\right)⋮x^2+4\)

\(\Rightarrow8⋮x^2+4\)

\(\Rightarrow x^2+4\inƯ\left(8\right)\)

Mà \(x^2+4\ge0+4=4\Rightarrow x^2+4\in\left\{4;8\right\}\)

\(\Rightarrow x^2\in\left\{0;4\right\}\)

\(\Rightarrow x\in\left\{-2;0;2\right\}\)

Với \(x=-2\Rightarrow\frac{x+2}{x^2+4}=\frac{0}{4+4}=0\in Z\left(TM\right)\)

Với \(x=0\Rightarrow\frac{x+2}{x^2+4}=\frac{2}{0+4}=\frac{1}{2}\notin Z\left(0TM\right)\)

Với \(x=2\Rightarrow\frac{x+2}{x^2+4}=\frac{4}{4+4}=\frac{1}{2}\notin Z\left(0TM\right)\)

Do đó \(x=-2\)

Vậy ...