Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x ≠ -5.
b) Ta có P = ( x + 5 ) 2 x + 5 = x + 5
c) Ta có P = 1 Û x = -4 (TMĐK)
d) Ta có P = 0 Û x = -5 (loại). Do vậy x ∈ ∅ .
a) ĐKXĐ:
\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)
b) \(A=\dfrac{x^2-2x+1}{x^2-1}\)
\(A=\dfrac{x^2-2\cdot x\cdot1+1^2}{x^2-1^2}\)
\(A=\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\)
\(A=\dfrac{x-1}{x+1}\)
c) Thay x = 3 vào A ta có:
\(A=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)
a) ĐKXĐ:
\(9x^2-y^2\ne0\Leftrightarrow\left(3x\right)^2-y^2\ne0\Leftrightarrow\left(3x-y\right)\left(3x+y\right)\ne0\)
\(\Leftrightarrow3x\ne\pm y\)
b) \(B=\dfrac{6x-2y}{9x^2-y^2}\)
\(B=\dfrac{2\cdot3x-2y}{\left(3x\right)^2-y^2}\)
\(B=\dfrac{2\left(3x-y\right)}{\left(3x+y\right)\left(3x-y\right)}\)
\(B=\dfrac{2}{3x+y}\)
Thay x = 1 và \(y=\dfrac{1}{2}\) và B ta có:
\(B=\dfrac{2}{3\cdot1+\dfrac{1}{2}}=\dfrac{2}{3+\dfrac{1}{2}}=\dfrac{2}{\dfrac{7}{2}}=\dfrac{4}{7}\)
1.Cho \(\frac{x^2-4x+4}{x^2-4}< 2\)
<=>\(\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}< 2\)
<=>\(\frac{x-2}{x+2}< 2\)
<=>\(\frac{x-2}{x+2}-2< 0\)
<=>\(\frac{x-2}{x+2}-\frac{2\left(x+2\right)}{x+2}< 0\)
<=>\(\frac{x-2-2\left(x+2\right)}{x+2}< 0\)
<=>\(\frac{x-2-2x-4}{x+2}< 0\)
<=>\(\frac{-x-6}{x+2}< 0\)
<=>\(\orbr{\begin{cases}\hept{\begin{cases}-x-6< 0\\x+2>0\end{cases}}\\\hept{\begin{cases}-x-6>0\\x+2< 0\end{cases}}\end{cases}}\)
<=>\(\orbr{\begin{cases}\hept{\begin{cases}x< -6\\x< -2\end{cases}}\\\hept{\begin{cases}x>-6\\x>-2\end{cases}}\end{cases}}\)
<=>\(\orbr{\begin{cases}x< -2\\x>-6\end{cases}}\)
Vậy -6 < x < -2
1) \(\frac{x^2-4x+4}{x^2-4}=\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)
\(\frac{x-2}{x+2}< 2\)
\(\Leftrightarrow\frac{x-2}{x+2}-2< 0\)
\(\Leftrightarrow\frac{x-2}{x+2}-\frac{2\left(x+2\right)}{x+2}< 0\)
\(\Leftrightarrow\frac{x-2-2x-4}{x+2}< 0\)
\(\Leftrightarrow\frac{-x-6}{x+2}< 0\)
\(\Leftrightarrow-x-6< 0\)
\(\Leftrightarrow-x< 6\)
\(\Leftrightarrow x>-6\)
vậy \(x>-6\)thì giá trị của phân thức \(>2\)
2) \(\frac{2x^2-4x+8}{x^3+8}\)
\(=\frac{2\left(x^2-2x+4\right)}{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(=\frac{2}{x+2}\)\(\left(x\ne-2\right)\)
khi đó \(\frac{2}{x+2}>2\)
\(\Leftrightarrow\frac{2}{x+2}-2>0\)
\(\Leftrightarrow\frac{2}{x+2}-\frac{2\left(x+2\right)}{x+2}>0\)
\(\Leftrightarrow\frac{2-2x-4}{x+2}>0\)
\(\Leftrightarrow\frac{-2x-2}{x+2}>0\)
\(\Leftrightarrow-2x-2>0\)
\(\Leftrightarrow-2x>2\)
\(\Leftrightarrow x< -1\)
1) Ta có:
x³ + y³ + z³ - 3xyz = (x+y)³ - 3xy(x-y) + z³ - 3xyz
= [(x+y)³ + z³] - 3xy(x+y+z)
= (x+y+z)³ - 3z(x+y)(x+y+z) - 3xy(x-y-z)
= (x+y+z)[(x+y+z)² - 3z(x+y) - 3xy]
= (x+y+z)(x² + y² + z² + 2xy + 2xz + 2yz - 3xz - 3yz - 3xy)
= (x+y+z)(x² + y² + z² - xy - xz - yz).
Câu 2:
\(\frac{x^2-y^2+6x+9}{x+y+3}\)
\(=\frac{x^2-y^2+x^2+6x+9-x^2}{x+y+3}\)
\(=\frac{ \left(x+3\right)^2-y^2}{x+y+3}\)
\(=\frac{\left(x-y+3\right)\left(x+y+3\right)}{x+y+3}\)
\(=x-y+3\)
a: ĐKXĐ: \(x\notin\left\{-1;-2\right\}\)
b: \(M=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\dfrac{x-1}{x+2}\)
Thay x=2002 vào M, ta được:
\(M=\dfrac{2002-1}{2002+1}=\dfrac{2001}{2003}\)
c: Để M=0 thì x-1=0
hay x=1(nhận)
a. \(\frac{9x^2-16}{3x^2-4x}\)(ĐKXĐ là: \(\hept{\begin{cases}x\ne0\\3x-4\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne\frac{4}{3}\end{cases}}\))
b. \(\frac{9x^2-16}{3x^2-4x}\)\(=\frac{\left(3x-4\right)\left(3x+4\right)}{x\left(3x-4\right)}=\frac{3x+4}{x}\)(1)
Thay x =3 vào (1), ta có:
\(\frac{3x+4}{x}=\frac{3.3+4}{3}=\frac{13}{3}\)
c. \(\frac{3x+4}{x}\left(x\ne0\right)\)
\(\frac{3x+4}{x}=0\)
\(\Rightarrow3x+4=0.x\)
\(\Leftrightarrow3x=-4\)
\(\Leftrightarrow x=\frac{-4}{3}\)
k cho mình nha cảm ơn nhìu
Ví dụ : Tìm tập hợp các ước của 24
Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }
Ta có thể tìm các ước của a bằng cách lần lượt chia a cho
các số tự nhiên từ 1 đến a để xét xem a chia hết cho những
số nào ,khi đó các số ấy là ước của a