K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2017

ta có phương trình x^2 +3x +m =0 

nên để pt có 2 nghiệm phân biệt thì 9 - 4m > 0 hay m <9/4

theo Viét  nếu x1 và x2 là 2 nghiệm của pt thì 

x1 +x2 =-3 (1)và

x1*x2=m  => 2x1*x2 =2m (2)

=> x1^2 +x2^2 +2m = (x1 +x2 )^2 (từ (1) và (2) )( cái hằng đẳng thức chắc bạn phải biết r đúng ko )

mà x1 +x2 =-3 ,,,x1^2 +x2^2 = 31 nên ta có

31 +2m =9 

m = -11

31 tháng 12 2017

vưa nãy mình -   nhầm 31 + 2m =9  thì m= -12 mới phải (hi  hi )

27 tháng 1 2022

a/ Xét pt :

\(x^2-2\left(m-1\right)+2m-5=0\)

\(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-2m+1-2m+5=m^2-4m+6=\left(m-2\right)^2+2>0\forall m\)

\(\Leftrightarrow\) pt luôn có 2 nghiệm pb với mọi m

b/ Phương trình cớ 2 nghiệm trái dấu

\(\Leftrightarrow2m-5< 0\)

\(\Leftrightarrow m< \dfrac{5}{2}\)

c/ Theo định lí Vi - et ta có :

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=2m-5\end{matrix}\right.\)

\(A=x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1.x_2\)

\(=4\left(m-1\right)^2-2\left(2m-5\right)\)

\(=4m^2-8m+4-4m+10\)

\(=4m^2-12m+14=4\left(m^2-3m+\dfrac{9}{4}\right)+5=4\left(m-\dfrac{3}{2}\right)^2+5\ge5\)

\(A_{min}=5\Leftrightarrow m=\dfrac{3}{2}\)

27 tháng 1 2022

1, \(\Delta'=\left(m-1\right)^2-\left(2m-5\right)=m^2-4m+6=\left(m-2\right)^2+2>0\)

Vậy pt luôn có 2 nghiệm pb với mọi m 

2, Vì pt có 2 nghiệm trái dấu 

\(x_1x_2=\dfrac{c}{a}=2m-5< 0\Leftrightarrow m< \dfrac{5}{2}\)

3, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{matrix}\right.\)

\(A=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m-1\right)^2-2\left(2m-5\right)\)

\(=4m^2-12m+14=4m^2-2.2m.3+9+6\)

\(=\left(2m-3\right)^2+6\ge6\forall m\)

Dấu ''='' xảy ra khi m = 3/2 

Vậy với m = 3/2 thì A đạt GTNN tại 6 

a: Δ=(2m-1)^2-4*(-m)

=4m^2-4m+1+4m=4m^2+1>0

=>Phương trình luôn có nghiệm

b: \(A=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\)

\(=\left(2m-1\right)^2-3\left(-m\right)\)

=4m^2-4m+1+3m

=4m^2-m+1

=4(m^2-1/4m+1/4)

=4(m^2-2*m*1/8+1/64+15/64)

=4(m-1/8)^2+15/16>=15/16

Dấu = xảy ra khi m=1/8

12 tháng 8 2019

Phương trình có hai nghiệm phân biệt x1, x2 ∆ = 52 – 4(3m + 1) > 0 21 – 12m > 0

 ó m < 21/12 

Với m < 21/12 , ta có hệ thức  x 1 + x 2 = 5 x 1 x 2 = 3 m + 1   V i e t '

⇒ | x 1 − x 2 | = ( x 1 − x 2 ) 2 = ( x 1 + x 2 ) 2 − 4 x 1 x 2 = 5 2 − 4 ( 3 m + 1 ) = 21 − 12 m = > | x 1 2 − x 2 2 | = | ( x 1 + x 2 ) ( x 1 − x 2 ) | = | 5 ( x 1 − x 2 ) | = 5 | x 1 − x 2 | = 5 21 − 12 m

Ta có:  | x 1 2 − x 2 2 | = 15 ⇔ 5 21 − 12 m = 15 ⇔ 21 − 12 m = 3 ⇔ 21 − 12 m = 9 ⇔ 12 m = 12 ⇔ m = 1 (t/m)

Vậy m = 1 là giá trị cần tìm

18 tháng 5 2021

`a)Delta`
`=m^2-4(m-1)`
`=m^2-4m+4`
`=(m-2)^2>=0`
`=>` pt luôn có nghiệm với mọi m
b)Áp dụng vi-ét:
`x_1+x_2=m,x_1.x_2=m-1`
`=>x_1^2+x_2^2`
`=(x_1+x_2)^2-2x_1.x_2`
`=m^2-2(m-1)`
`=m^2-2m+1`
Với `m=3`
`=>x_1^2+x_2^2=9-6+1=4`

23 tháng 2 2022

a, \(\Delta'=\left(-m\right)^2-1\left(-1\right)=m^2+1>0\)

Vậy phương trình đã cho luôn có hai nghiệm phân biệt x1 và x2

b, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-1\end{matrix}\right.\)

\(x^2_1+x^2_2-x_1x_2=7\\ \Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\\ \Leftrightarrow\left(2m\right)^2-3\left(-1\right)=7\\ \Leftrightarrow4m^2+3=7\\ \Leftrightarrow4m^2=4\\ \Leftrightarrow m^2=1\\ \Leftrightarrow m=\pm1\)

5 tháng 7 2023

Bổ sung thêm điều kiện đề với \(m\ne1\) nữa nhé: )

Nhẩm nghiệm: \(a-b+c=0\) \(\left(m-1-m-1+2=0\right)\)

\(\Rightarrow\) PT có 2 nghiệm \(x_1=-1;x_2=\dfrac{2}{m-1}\)

Nếu \(x_1^2-x_2^2=3\):

\(\left(-1\right)^2-\left(\dfrac{2}{m-1}\right)^2=3\)

=> Không có giá trị m thỏa mãn.

Nếu \(x_1^2-x_2^2=-3\):

\(\left(-1\right)^2-\left(\dfrac{2}{m-1}\right)^2=-3\\ \Rightarrow m=2\left(TM\right)\)

21 tháng 12 2019

Đáp án: B

1: Δ=(2m-2)^2-4(2m-5)

=4m^2-8m+4-8m+20

=4m^2-16m+24

=4m^2-16m+16+8

=(2m-4)^2+8>=8>0 với mọi m

=>PT luôn có 2 nghiệm pb

2: Để pt có hai nghiệm trái dấu thì 2m-5<0

=>m<5/2

3: A=(x1+x2)^2-2x1x2

=(2m-2)^2-2(2m-5)

=4m^2-8m+4-4m+10

=4m^2-12m+14

=4(m^2-3m+7/2)

=4(m^2-2m*3/2+9/4+5/4)

=4(m-3/2)^2+5>=5

Dấu = xảy ra khi m=3/2

15 tháng 5 2023

`1)` Ptr có: `\Delta'=[-(m-1)]^2-2m+5`

                             `=m^2-4m+4+2=(m-2)^2+2 > 0 AA m`

  `=>` Ptr có `2` nghiệm phân biệt `AA m`

`2)` Ptr có `2` nghiệm trái dấu `<=>ac < 0`

          `<=>2m-5 < 0<=>m < 5/2`

`3) AA m` ptr có `2` nghiệm phân biệt

  `=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m-2),(x_1.x_2=c/a=2m-5):}`

Ta có: `A=x_1 ^2+x_2 ^2`

`<=>A=(x_1+x_2)^2-2x_1.x_2`

`<=>A=(2m-2)^2-2(2m-5)`

`<=>A=4m^2-8m+4-4m+10`

`<=>A=4m^2-12m+14`

`<=>A=(2m-3)^2+5 >= 5 AA m`

   `=>A_[mi n]=5`

Dấu "`=`" xảy ra `<=>2m-3=0<=>m=3/2`