Cho đg tròn (O; R) cố định và đg thẳng d cố định ko cắt (O; R) .Từ một điểm A bất kì trên đg thẳng d kẻ tiếp tuyến AB vs đg tròn (O; R) ,B là tiếp điểm. Kể dây BC vuông góc AO tại H (H€OA)
a) chứng minh AC là tiếp tuyến của (O; R)
b) kẻ OI vuông góc vs đg thẳng d (I€d) ,OI cắt BC tại K. Chứng minh OH×OA=OI×OK=R^2
c) chứng minh khi A thay đổi trên đg thẳng d thì đg thẳng BC luôn đi qua 1 điểm cố định
a) Xét tam giác cân OBC có OK là đường cao nên đồng thời là phân giác.
Vậy thì ^ BOA = ^ COA Suy ra ΔABO=ΔACO(c−g−c)⇒ ^ ACO = ^ ABO =90o
Vậy nên AC là tiếp tuyến của đường tròn (O)
bó tay. com k mk nha!!!