Chứng minh rằng số a= 111....1222....2 ( gồm 100 chữ số. Trong đó có 50 chữ số 1 ở vị trí đầu và 50 chữ số 2 ở vị trí cuối) là tích của hai số tự nhiên liên tiếp.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 111...1=a ( n chữ số 1 )
=>10n=9a+1
Ta có
111...1222...2=(111...1).10n+222...2
=a(9a+1)+2a
=9a2+a+2a
=9a2+3a
=3a(3a+1)
=> DPCM
Đặt 111...1=a ( n chữ số 1 )
=>10n=9a+1
Ta có
111...1222...2=(111...1).10n+222...2
=a(9a+1)+2a
=9a2+a+2a
=9a2+3a
=3a(3a+1)
=> DPCM
a) 1122 = 11.100 + 22 = 11( 99 + 3 ) = 11( 11.9 + 3 ) = 33 ( 33 + 1 ) = 33.34
b) 111222 = 111.1000 + 222 = 111( 999 + 3 ) = 111 ( 111.9 + 3 ) = 333 ( 333 + 1 ) = 333.334
c) 111...1222...2 = 111...1 . 1000....0 + 222...22 = 111...1 ( 999...9 + 3 ) = 111...1 ( 1111...11.9 + 3 ) = 33...333 ( 333...33 + 1 ) = 333...33 . 333...34 ( số thứ nhất gồm có 50 chữ số 3, số thứ hai gồm có 49 chữ số 3 )
a) Tìm 4 số tự nhiên liên tiếp? Biết rằng tích của chúng là 3024.
Gọi 4 số tự nhiên liên tiếp đó lần lượt là a,a+1,a+2,a+3
Theo bài ra ta có
a(a+1)(a+2)(a+3)=3024
<=> (a2+3a)(a2+3a+2)=3024 (1)
Đặt a2+3a+1=b
(1)<=> (b-1)(b+1)=3024
<=> b2=3025
<=> a2+3a+1=55
<=> (a+1)(a+2)=56=7.8
<=>\(\hept{\begin{cases}a+1=7\\a+2=8\end{cases}}\)
<=> a=6
Vậy 4 số tự nhiên liên tiếp cần tìm là 6,7,8,9
a) 3024 chia hết cho cả 2 và 3
=> chia hết cho 6;
3024 = 6 x 504
504 = 6 x 84
84 = 6 x 14
14 = 7 x 2
=> 3024 = 7 x 2 x 6 x 6 x 6
= 6 x 7 x 2 x 6 x 6
= 6 x 7 x 8 x 9
Đáp số : 6x7x8x9
Gọi 11...1(2012 c/s 1) là x.
Ta có:11...122...2
=11...100...0+22...2
=11...1.100...0+22...2
=11....1.(99...9+1)+111...1.2
=x(9x+1)+2x
=9x2+x+2x
=9x2+3x
=(3x)2+3x
=3x.3x+3x
=3x.(3x+1)
=>11...122...2 là tích của hai số tự nhiên liên tiếp.
Vậy 11...122...2 là tích của hai số tự nhiên liên tiếp.
11...122...2 ( n số 1; n số 2)
=111....1(n chữ số 1) 00...00(n chữ số 0) + 22...2(n chữ số 2)
=111...1(n chữ số 1) . 100...0(n chữ số 0) +111...1(n chữ số 1) . 2
=11....1(n chữ số 1) (1000....0(n chữ số 0) + 2)
=111....1(n chữ số 1) . 100...02(n-1 chữ số 0)
=11...1 . 3 ( n chữ số 1) . 33...34(n-1 chữ số 3)
=333...3( n chữ số 3) . 33...34(n-1 chữ số 3)
Vậy ..........
111...1222...2 = 111...1. 10n + 222...2 = 111...1. 10n + 2. 111...1 (n chữ số 1)
= 111...1.(10n + 2) (n chữ số 1)
Nhận xét: 10n = 999...9 + 1 (n chữ số 9)
= 9. 111...1 + 1
đặt a = 111...1 => 111...1222...2 = a.(9a +1 + 2) = a.(9a+ 3) = 3a(3a + 1)
hai số 3a ; 3a + 1 là số tự nhiên liên tiếp
=> đpcm
Số mật khẩu có thể lập được là:
\(2\cdot9\cdot C^4_{10}=3780\left(cái\right)\)