K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2022

a) Vì \(\widehat{M}\) là trung điểm của \(\widehat{BC}\) nên:

\(\widehat{BM}=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

\(\Delta ABC\) cân tại \(A\), lại có \(\widehat{AM}\) là đường phân giác nên \(\widehat{AM}\) cũng là đường cao. Do đó \(\Delta AMB\) vuông tại \(\widehat{M}\)

\(\Rightarrow AM^2=AB^2-BM^2\) ( theo định lí Pytago )

\(\Rightarrow\widehat{AM}=4cm\)

\(S_{ABC}=\dfrac{AM.BC}{2}=\dfrac{4.6}{2}=12\left(cm^2\right)\)

b) \(\Delta AMC\) vuông tại\(M\) có \(\widehat{MO}\) là đường trung tuyến nên \(\widehat{OM}=\widehat{OA}\)

 \(\Rightarrow\text{∠}OAM=\text{∠}OMA\)( \(\Delta AMO\) cân tại \(O\)

Lại có \(\text{∠}OAM=\text{∠}MAB\) ( \(AM\) là tia phân giác của \(BAC\) )

\(\Rightarrow\text{∠}OMA=\text{∠}MAB\)

Mà đây là 2 góc ở vị trí so le trong

\(\Rightarrow OM\text{ // }AB\)

Vậy tứ giác \(ABMO\) là hình thang. 

c) Tứ giác \(AMCK\) có \(\widehat{OA}=\widehat{OC};\widehat{OM}=\widehat{OK}\)  nên tứ giác \(AMCK\) là hình bình hành . Lại có \(\text{∠}AMC=90^o\)(chứng minh trên) nên tứ giác \(ACMK\) là hình chữ nhật

Hình chữ nhật \(ACMK\) là hình vuông

\(\Leftrightarrow\widehat{AM}=\widehat{MC}=\widehat{BM}\)

\(\Leftrightarrow\widehat{AM}=\dfrac{BC}{2}\)

\(\Leftrightarrow\Delta ABC\) vuông tại \(\widehat{A}\)

undefined

 

14 tháng 2 2022

TK
 

a) Vì M là trung điểm của BC nên:

BM = BC/2 = 6/2 = 3(cm)

Tam giác ABC cân tại A, lại có AM là đường phân giác nên AM cũng là đường cao. Do đó tam giác AMB vuông tại M.

Suy ra: AM2 = AB2 - BM2 (Định lí Pytago)

= 52 - 32 = 16(cm)

Suy ra AM = 4cm

Bộ Đề thi Toán lớp 8

b) ΔAMC vuông tại M có MO là đường trung tuyến nên OM = OA.

Suy ra ∠OAM = ∠OMA ( ΔAMO cân tại O)

Lại có ∠OAM = ∠MAB (AM là tia phân giác góc BAC)

Suy ra ∠OMA = ∠MAB

Mà đây là 2 góc ở vị trí so le trong

Suy ra OM // AB

Vậy tứ giác ABMO là hình thang.

c) Tứ giác AMCK có OA = OC; OM = OK nên tứ giác AMCK là hình bình hành . Lại có ∠AMC = 90o (chứng minh trên) nên tứ giác AMCK là hình chữ nhật.

Hình chữ nhật AMCK là hình vuông

⇔ AM = MC = BM

⇔ AM = BC/2

⇔ ΔABC vuông cân tại A.

a: ΔABC cân tại A

mà AM là phân giác

nên AM vuôg góc BC và M là trung điểm của BC

\(BM=CM=\dfrac{60}{2}=30\left(cm\right)\)

\(AM=\sqrt{50^2-30^2}=40\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot40\cdot60=20\cdot60=1200\left(cm^2\right)\)

b: Xét ΔOAK và ΔOCM có

OA=OC

góc AOK=góc COM

OK=OM

=>ΔOAK=ΔOCM

=>góc OAK=góc OCM

=>AK//CM

b: Xét tứ giác AMCK có

AK//CM

AK=CM

góc AMC=90 độ

=>AMCK là hfinh chữ nhật

d: Để AMCK là hình vuông thì AM=CM=BC/2

=>ΔABC vuông tại A

a: Xét tứ giác AMCK có

I là trung điểm chung của AC và MK

góc AMC=90 độ

Do đó: AMCK là hình chữ nhật

b: BM=CM=BC/2=3cm

\(AM=\sqrt{5^2-3^2}=4\left(cm\right)\)

S=1/2*AM*BC=1/2*6*4=3*4=12cm2

c: Để AMCK là hình vuông thì AM=CM=BC/2

=>ΔABC vuông tại A

8 tháng 5 2019

a) Vì M là trung điểm của BC nên:

BM = BC/2 = 6/2 = 3(cm)

Tam giác ABC cân tại A, lại có AM là đường phân giác nên AM cũng là đường cao. Do đó tam giác AMB vuông tại M.

Suy ra: AM2 = AB2 - BM2 (Định lí Pytago)

= 52 - 32 = 16(cm)

Suy ra AM = 4cm

b) ΔAMC vuông tại M có MO là đường trung tuyến nên OM = OA.

Suy ra ∠OAM = ∠OMA ( ΔAMO cân tại O)

Lại có ∠OAM = ∠MAB (AM là tia phân giác góc BAC)

Suy ra ∠OMA = ∠MAB

Mà đây là 2 góc ở vị trí so le trong

Suy ra OM // AB

Vậy tứ giác ABMO là hình thang.

c) Tứ giác AMCK có OA = OC; OM = OK nên tứ giác AMCK là hình bình hành . Lại có ∠AMC = 90o (chứng minh trên) nên tứ giác AMCK là hình chữ nhật.

Hình chữ nhật AMCK là hình vuông

⇔ AM = MC = BM

⇔ AM = BC/2

⇔ ΔABC vuông cân tại A.

21 tháng 12 2021

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

21 tháng 12 2021

a: Xét tứ giác AMCK có

I là trung điểm của AC

I là trung điểm của MK

Do đó: AMCK là hình bình hành

mà \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

21 tháng 12 2021

Còn Câu B câu C nữa

a: BC=6cm

nên BM=CM=3cm

=>AM=4cm

\(S_{ABC}=\dfrac{3\cdot4}{2}=6\left(cm^2\right)\)

b: Xét tứ giác AMCK có

O là trung điểm của AC

O là trung điểm của MK

Do đó;AMCK là hình bình hành

Suy ra: AK//MC

c: Hình bình hành AMCK có \(\widehat{AMC}=90^0\)

nên AMCK là hình chữ nhật

26 tháng 12 2022

đang cần mong mn giúp 

26 tháng 12 2022

Hình tự vẽ ạ 

a)

Ta có:

Tam giác ABC cân tại A (gt)

Đường trung tuyến AM (gt) 

=> AM vừa là đường cao vừa là đường trung tuyến vừa là đường phân giác trong tam giác ABC ( tính chất đường trung tuyến trong tam giác cân )

MA là đường cao(cmt)=> AM vuông góc BC

Tứ giác AMCK có:

I là trung điểm của AC (gt)

I là trung điểm của MK ( K đối xứng M qua I )

=> I là trung điểm của 2 đường chéo AC và MK

=> Tứ giác AMCK là Hình bình hành

Hình bình hành AMCK có:

Góc AMC vuông (AM vuông góc BC )

=> Hình bình hành AMCK là hình chữ nhật 

b)

Vì : Hình bình hành AMCK là hình chữ nhật ⇒ AK // MC ( tính chất hình chữ nhật )

Δ ABC có:

M là trung điểm của BC ( AM là đường trung tuyến )

I là trung điểm của AC (gt)

⇒IM Là đường trung bình của ΔABC

⇒IM // AB (tính chất đường trung bình )

Tứ giác AKMB có:

MK // AB ( IM // AB )

AK // BM ( AK // MC )

⇒ Tứ giác AKMB là Hình Bình Hành

c) 

Theo đề ra ta có:

AM là đường trung tuyến

⇒ M là trung điểm của BC

⇒ \(BM=CM=\dfrac{1}{2}BC\)

Mà : BC = 8 cm 

⇒ \(BM=CM=\dfrac{1}{2}BC=\dfrac{1}{2}8=4cm\)

Áp dụng định lí Pi ta go vào \(\Delta ACM\) ta có:

\(AC^2=AM^2+CM^2\)

\(\Rightarrow AM^2=AC^2-CM^2=5^2-4^2=9\)

\(\Rightarrow AM=3cm\)

Diện tích tứ giác AMCK là :

\(S_{AMCK}=AM.CM\)

\(\Rightarrow S_{AMCK}=3.4=12cm^2\)

Vậy diện tích tứ giác AMCK là 12 cm vuông

c)

Giả sử tam giác ABC vuông cân 

=> Góc A = 90 độ; AB = AC ( tính chất tam giác vuông cân )

AM là đường trung tuyến (gt)

=> AM là đường trung tuyến và là đường phân giác trong tam giác ABC

Tam giác ABC có:

AM Là đường trung tuyến ứng với cạnh huyền BC 

=> AM = 1/2BC ( tính chất đường trung tuyến ứng với cạnh huyền ) (1)

Mà :

M là trung điểm của BC => BM = CM =1/2BC (2)

từ 1 và 2 => AM = CM = 1/2 BC

Tứ giác AMCK có:

I là trung điểm của AC (gt)

I là trung điểm của MK ( K đối xứng M qua I )

AM = CM (cmt)

=> Tứ giác AMCK là Hình Vuông

Vậy để tứ giác AMCK là hình vuông thì điều kiện cần có của tam giác ABC là tam giác ABC vuông cân