K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2017

Ta có:

n^2+3n+4=n(n+3)+4

Vì n(n+3) chia hết cho n+3 nên để n(n+3)+4 chia hết cho n+3 thì \(4⋮n+3\)

\(=>n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Ta có bảng:

n+31-12-24-4
n-2-4-1-51-7

Mà \(n\in N\)

=>n=1

Vậy n=1

a, 

Ta có: 4n-5 chia hết cho 2n-1

=>4n-2-3 chia hết cho 2n-1

=>2.(2n-1)-3 chia hết cho 2n-1

=>3 chia hết cho 2n-1

=>2n-1=Ư(3)=(-1,-3,1,3)

=>2n=(0,-2,2,4)

=>n=(0,-1,1,2)

Vậy n=0,-1,1,2

11:

n^3-n^2+2n+7 chia hết cho n^2+1

=>n^3+n-n^2-1+n+8 chia hết cho n^2+1

=>n+8 chia hết cho n^2+1

=>(n+8)(n-8) chia hết cho n^2+1

=>n^2-64 chia hết cho n^2+1

=>n^2+1-65 chia hết cho n^2+1

=>n^2+1 thuộc Ư(65)

=>n^2+1 thuộc {1;5;13;65}

=>n^2 thuộc {0;4;12;64}

mà n là số tự nhiên

nên n thuộc {0;2;8}

Thử lại, ta sẽ thấy n=8 không thỏa mãn

=>\(n\in\left\{0;2\right\}\)

4 tháng 9 2023

cảm on ha

14 tháng 8 2021

c) 13n⋮n-1

13n-13+13⋮n-1

13n-13⋮n-1 ⇒13⋮n-1

n-1∈Ư(13)

Ư(13)={1;-1;13;-13}

⇒n∈{2;0;14;-12}

 

14 tháng 8 2021

b) Bạn tham khảo nha: https://olm.vn/hoi-dap/detail/99050878351.html

15 tháng 2 2023

\(1,3n+7=3n+3+4=3\left(n+1\right)+4⋮\left(n+1\right)\\ =>n+1\inƯ\left(4\right)\\ Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\\ TH1,n+1=1\\ =>n=0\\ TH2,n+1=-1\\ =>n=-2\\ TH3,n+1=2\\ =>n=1\\ TH3,n+1=-2\\ =>n=-3\\ TH4,n+1=4\\ =>n=3\\ TH5,n+1=-4\\ =>n=-5\)

18 tháng 12 2021

\(\Leftrightarrow n-4\in\left\{1;-1;2;-2;7;-7;14;-14\right\}\)

hay \(n\in\left\{5;3;6;2;11;18\right\}\)

22 tháng 9 2017

Để n+3 chia hết n+1 \(\Rightarrow\) n+3-(n+1)\(⋮\) n+1

                                 \(\Rightarrow\)n+3-n-1\(⋮\)n+1

                                \(\Rightarrow\)      2\(⋮\)n+1

                                  \(\Rightarrow\)n+1\(\in\){2;1}

lập bảng 

n+112
  n0

1

Vậy n\(\in\){0;1} thì n+3\(⋮\)n+1

22 tháng 9 2017

Ta có n+3=(n+1) +2\(\Rightarrow\)n+3\(⋮\)n+1 khi n+1 la ước của 2

Ư(2)-2-112
n-3(loại)-2(loại)01

Ta có n2+3n+4=n(n+3) +4 \(\Rightarrow\)n2+3n+4\(⋮\)n+3 khi n+3 thuộc ước của 4

Vậy n=1

2 tháng 12 2023

Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2

TH1: Nếu a chia hết cho 3 => Đề bài đúng

TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)

=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng

TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)

=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng

TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)

2 tháng 12 2023

Bài 5:

Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3

Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2

Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4

Nhưng: 2 không chia hết cho 4

Nên: 4(b+1)+2 không chia hết cho 4

Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4 

Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)