Chứng minh rằng nếu x+y+z= a và 1/x+1/y+1/z=1/a thì tồn tại trong ba số x,y,z bằng a
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{a}\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{1}{z}-\dfrac{1}{x+y+z}=0\)
\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\dfrac{\left(x+y\right)\left(xy+yz+zx+z^2\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\dfrac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\z+x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}z=a\\x=a\\y=a\end{matrix}\right.\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{a}\)
\(\Leftrightarrow\)\(\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)
\(\Leftrightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)
\(\Leftrightarrow\)\(x^2y+xyz+x^2z+xy^2+xyz+y^2z+x^2z+xyz+xz^2-xyz=0\)
\(\Leftrightarrow\)\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\) (chỗ này mk lm tắt nha)
\(\Leftrightarrow\)\(x+y=0\) \(\Leftrightarrow\) \(z=a\)
\(y+z=0\) \(x=a\)
\(x+z=0\) \(y=a\)
Vậy tồn tại 1 trong 3 số x,y,z = a (đpcm)
từ x+y+z=a và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=a\)
\(\Rightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\dfrac{xy+yz+zx}{xyz}=\dfrac{1}{xyz}\)
<=>(xy+yz+xz)(x+y+z)=xyz
Từ đó bạn nhân phá ngoặc rồi biến phương trình trên về dạng:
(x+y)(y+z)(z+x)=0
=> x=-y =>z=a
hoặc y=-z =>x=a
hoặc z=-x =>y=a.
Mik nghĩ vậy nhé!
Từ x+y+z=2015 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z\Rightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Rightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\Rightarrow\frac{\left(x+y\right)\left(xy+yz+zx+z^2\right)}{xyz\left(x+y+z\right)}=0\)
\(\Rightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)(Do x,y,z khác 0)
Mà x+y+z=2015 và (x+y)(y+z)(x+z)=0
=> x+y=0 => z =2015
hoặc y+z=0 => x=2015
hoặc x+z=0 => y=2015
Vậy nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z=2015\)thì ít nhất 1 trong 3 số x,y,z bằng 2015(ĐPCM)
lik.e nhé!
Lời giải:
Vì \(x+y+z=2018; \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2018}\)
\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow \frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0\)
\(\Leftrightarrow (x+y)\left[\frac{1}{xy}+\frac{1}{z(x+y+z)}\right]=0\)
\(\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0\)
\(\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0\)
\(\Leftrightarrow (x+y)(y+z)(x+z)=0\)
\(\Rightarrow \left[\begin{matrix} x+y=0\\ y+z=0\\ z+x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x+y+z=z\\ x+y+z=x\\ x+y+z=y\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} 2018=z\\ 2018=x\\ 2018=y\end{matrix}\right.\)
Tức là trong ba số $x,y,z$ phải có ít nhất một số bằng $2018$
từ giả thiết => \(\frac{1}{x+y+z}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
sau đó quy đòng và tách nhân tử là (x+y)(y+z)(z+x)=0
=> 2 số sẽ đối nhau, nên sẽ tồn tại 1 số = a